Person: Rabkin, Samuel
Loading...
Email Address
AA Acceptance Date
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Rabkin
First Name
Samuel
Name
Rabkin, Samuel
10 results
Search Results
Now showing 1 - 10 of 10
Publication Curing glioblastoma: oncolytic HSV-IL12 and checkpoint blockade(Impact Journals LLC, 2017) Saha, Dipongkor; Martuza, Robert; Rabkin, SamuelPublication Combination of vinblastine and oncolytic herpes simplex virus vector expressing IL-12 therapy increases antitumor and antiangiogenic effects in prostate cancer models(2013) Passer, Brent J.; Cheema, Tooba A; Wu, Shulin; Wu, Chen-lee; Rabkin, Samuel; Martuza, RobertOncolytic herpes simplex virus-1 (oHSV)–based vectors selectively replicate in tumor cells causing direct killing, ie., oncolysis, while sparing normal cells. oHSV’sare promising anticancer agents, but their efficacy, when used as single agents, leaves room for improvement. We hypothesized that combining the direct oncolytic and antiangiogenic activities of the IL-12 secreting NV1042 oHSV with microtubule disrupting agents (MDA’s) would be an effective means to enhance antitumor efficacy. Vinblastine (VB) was identified among several MDA’s screened that displayed consistent and potent cytotoxic killing of both prostate cancer and endothelial cell lines. In matrigel tube forming assays, VB was found to be highly effective at inhibiting tube formation of HUVEC cells. The combination of VB with NV1023 (the parental virus lacking IL-12) or NV1042 showed additive or synergistic activity against prostate cancer cell lines and was not due to increased oHSV replication by VB. In athymic mice bearing CWR22 prostate tumors, VB in combination with NV1042 was superior to the combination of VB plus NV1023 in reducing tumor burden, appeared to be nontoxic and resulted in a statistically significant diminution in the number of CD31+ cells as compared to other treatment groups. In human organotypic cultures using surgical samples from radical prostatectomies, both NV1023 and NV1042 were localized specifically to the epithelial cells of prostatic glands but not to the surrounding stroma. These data highlight the therapeutic advantage of combining the dual-acting anti-tumor and anti-angiogenic activities of oHSV’s and MDA’s.Publication Immunovirotherapy for the treatment of glioblastoma(Landes Bioscience, 2014) Cheema, Tooba A; Fecci, Peter; Ning, Jianfang; Rabkin, SamuelWe have recently described a new murine model of glioblastoma, generated by the implantation of syngeneic glioblastoma stem cells into immunocompetent mice, that recapitulates the salient histopathological and immunological features of the human disease. We employed this model to demonstrate the multifaceted activity of an oncolytic herpes simplex virus genetically modified to express interleukin-12, G47∆-IL12.Publication Treatment of human hepatocellular carcinoma by the oncolytic herpes simplex virus G47delta(BioMed Central, 2014) Wang, Jiani; Xu, Lihua; Zeng, Weigen; Hu, Pan; Zeng, Musheng; Rabkin, Samuel; Liu, RenbinBackground: Oncolytic herpes simplex virus (HSV) can replicate in and kill cancer cells while sparing the adjacent normal tissue. Hepatocellular carcinoma (HCC) is amongst the most common and lethal cancers, especially in Third World countries. In this study, the cytotoxicity of a third-generation oncolytic HSV, G47Δ, was investigated in different human HCC cell lines and in an immortalized human hepatic cell line. Additionally, subcutaneous models of HCC were established to evaluate the in vivo anti-tumor efficacy of G47Δ. Methods: The HepG2, HepB, SMMC-7721, BEL-7404, and BEL-7405 human HCC cell lines and the HL-7702 human hepatic immortalized cell lines were infected with G47Δ at different multiplicities of infection (MOIs). The viability of infected cells was determined, and the G47Δ replication was identified by X-gal staining for LacZ expression. Two subcutaneous (s.c.) HCC tumor models of HCC were also established in Balb/c nude mice, which were intratumorally(i.t.) treated with either G47Δ or mock virus. Tumor volume and mouse survival times were documented. Results: More than 95% of the HepG2, Hep3B,and SMMC-7721 HCC cells were killed on by day 5 after infection with a MOI’s of 0.01. For the HL-7702 human hepatic immortalized cells, 100% of the cells were killed on by day 5 after infection with a MOI’s of 0.01. The BEL-7404 HCC cell line was less susceptible with about 70% cells were killed by day 5 after infection with a MOI’s of 0.01. Whereas the BEL-7405 HCC cells were the least susceptible, with only 30% of the cells were killed. Both the SMMC-7721 and BEL-7404 cells form aggressive sc tumor models. G47Δ replicates in the tumors, such that most of the tumors regressed after the G47Δ-treatment, and treated tumor-bearing mice survived much longer than the control animals. Conclusions: G47Δ effectively kills human HCC cells and an immortalized hepatic cell line at low MOI. Intra-tumor injection of G47Δ can induce a therapeutic effect and prolong the survival of treated mice bearing SMMC-7721 and BEL-7404 subcutaneously (s.c.) tumors. Thus, G47Δ may be useful as a novel therapeutic agent for HCC.Publication Oncolytic viruses on the cusp of success?: proceedings of the 9th International Conference on Oncolytic Virus Therapeutics(Nature Publishing Group, 2016) Peters, Cole; Nigim, Fares; Chiocca, E Antonio; Rabkin, SamuelBoston, Massachusetts, was the site of the 9th International Conference on Oncolytic Virus Therapeutics held 13–16 June 2015. An overarching theme of the meeting was the continued development of combinatorial treatment regimens to bolster the therapeutic potential of oncolytic viruses (OVs). Several talks focused on combining OVs with immune checkpoint inhibitors in a wide array of tumors, signaling an experimental and thematic shift toward driving immune activation to clear a tumor versus relying on direct viral oncolysis. An important aspect of the meeting was the variety of ongoing OV clinical trials. Topics ranged from basic virology to clinical trials and from academic research to intellectual property and biotechnology. There was much excitement due to the US Food and Drug Administration’s recent consideration of talimogene laherparepvec (T-VEC) for the treatment of advanced melanoma (T-VEC was approved in October, following the conference). Here, we summarize the meeting’s primary themes, which reflect the current state of the field.Publication Reconstructing and Reprogramming the Tumor-Propagating Potential of Glioblastoma Stem-like Cells(Elsevier BV, 2014) Suva, Mario; Rheinbay, Esther; Gillespie, Shawn M.; Patel, Anoop Premswaroop; Wakimoto, Hiroaki; Rabkin, Samuel; Riggi, Nicolo; Chi, Anthony Wei Shine; Cahill, Daniel; Nahed, Brian; Curry, William; Martuza, Robert; Rivera, Miguel; Rossetti, Nikki; Kasif, Simon; Beik, Samantha Petrillo; Kadri, Sabah; Tirosh, Itay; Wortman, Ivo; Shalek, Alex K.; Rozenblatt-Rosen, Orit; Regev, Aviv; Louis, David; Bernstein, BradleyDevelopmental fate decisions are dictated by master transcription factors (TFs) that interact with cis-regulatory elements to direct transcriptional programs. Certain malignant tumors may also depend on cellular hierarchies reminiscent of normal development but superimposed on underlying genetic aberrations. In glioblastoma (GBM), a subset of stem-like tumor-propagating cells (TPCs) appears to drive tumor progression and underlie therapeutic resistance, yet remain poorly understood. Here, we identify a core set of neurodevelopmental TFs (POU3F2, SOX2, SALL2, OLIG2) essential for GBM propagation. These TFs coordinately bind and activate TPC-specific regulatory elements, and are sufficient to fully reprogram differentiated GBM cells to ‘induced’ TPCs, recapitulating the epigenetic landscape and phenotype of native TPCs. We reconstruct a network model that highlights critical interactions and identifies novel therapeutic targets for eliminating TPCs. Our study establishes the epigenetic basis of a developmental hierarchy in GBM, provides detailed insight into underlying gene regulatory programs, and suggests attendant therapeutic strategies.Publication Designing herpes viruses as oncolytics(Nature Publishing Group, 2015) Peters, Cole; Rabkin, SamuelOncolytic herpes simplex virus (oHSV) was one of the first genetically-engineered oncolytic viruses. Because HSV is a natural human pathogen that can cause serious disease, it is incumbent that it can be genetically-engineered or significantly attenuated for safety. Here, we present a detailed explanation of the functions of HSV-1 genes frequently mutated to endow oncolytic activity. These genes are nonessential for growth in tissue culture cells but are important for growth in postmitotic cells, interfering with intrinsic antiviral and innate immune responses or causing pathology, functions dispensable for replication in cancer cells. Understanding the function of these genes leads to informed creation of new oHSVs with better therapeutic efficacy. Virus infection and replication can also be directed to cancer cells through tumor-selective receptor binding and transcriptional- or post-transcriptional miRNA-targeting, respectively. In addition to the direct effects of oHSV on infected cancer cells and tumors, oHSV can be “armed” with transgenes that are: reporters, to track virus replication and spread; cytotoxic, to kill uninfected tumor cells; immune modulatory, to stimulate antitumor immunity; or tumor microenvironment altering, to enhance virus spread or to inhibit tumor growth. In addition to HSV-1, other alphaherpesviruses are also discussed for their oncolytic activity.Publication Treatment of breast cancer stem cells with oncolytic herpes simplex virus(Nature Publishing Group, 2012) Li, J.; Zeng, W.; Zhang, Q.; Hu, P; Rabkin, Samuel; Liu, R.Cancer stem cells have recently been isolated from several different solid tumors. In breast cancer, the \(CD44^{+} CD24^{−/low}\) population is considered to comprise stem-like cells. The identification of cancer stem cells has provided new targets for the development of therapeutics. Oncolytic herpes simplex viruses (oHSVs) are an effective strategy for killing breast cancer cells and treating breast tumors in preclinical models. Here, we examined the efficacy of the oHSV G47Δ in killing breast cancer stem cells. Human breast cancer cell line SK-BR-3 and human primary breast cancer cells were cultured in suspension under conditions conducive to the growth of stem cells. They generated mammospheres, which had cancer stem cell properties. The proportion of \(CD44^{+} CD24^{−/low}\) cells in these mammospheres exceeded 95%, as determined by flow cytometry. The mammospheres were found to be highly tumorigenic when implanted subcutaneously in nude BALB/c mice. G47Δ contains the LacZ gene, and X-gal staining of infected cells in vitro and in vivo showed the replication and spread of the virus. G47Δ was found to be highly cytotoxic to the \(CD44^{+} CD24^{−/low}\) population in vitro, even when injected at low multiplicities of infection, and G47Δ treatment in vivo significantly inhibited tumor growth compared with mock treatment. This study demonstrates that oHSV is effective against breast cancer stem cells and could be a beneficial strategy for treating breast cancer patients.Publication Flip-Flop HSV-BAC: Bacterial Artificial Chromosome Based System for Rapid Generation of Recombinant Herpes Simplex Virus Vectors Using Two Independent Site-specific Recombinases(BioMed Central, 2006) Kuroda, Toshihiko; Martuza, Robert; Todo, Tomoki; Rabkin, SamuelBackground: Oncolytic herpes simplex virus (HSV) vectors that specifically replicate in and kill tumor cells sparing normal cells are a promising cancer therapy. Traditionally, recombinant HSV vectors have been generated through homologous recombination between the HSV genome and a recombination plasmid, which usually requires laborious screening or selection and can take several months. Recent advances in bacterial artificial chromosome (BAC) technology have enabled cloning of the whole HSV genome as a BAC plasmid and subsequent manipulation in E. coli. Thus, we sought a method to generate recombinant oncolytic HSV vectors more easily and quickly using BAC technology. Results: We have developed an HSV-BAC system, termed the Flip-Flop HSV-BAC system, for the rapid generation of oncolytic HSV vectors. This system has the following features: (i) two site-specific recombinases, Cre and FLPe, are used sequentially to integrate desired sequences and to excise the BAC sequences, respectively; and (ii) the size of the HSV-BAC-insert genome exceeds the packaging limit of HSV so only correctly recombined virus grows efficiently. We applied this to the construction of an HSV-BAC plasmid that can be used for the generation of transcriptionally-targeted HSV vectors. BAC sequences were recombined into the UL39 gene of HSV ICP4-deletion mutant d120 to generate M24-BAC virus, from which HSV-BAC plasmid pM24-BAC was isolated. An ICP4 expression cassette driven by an exogenous promoter was re-introduced to pM24-BAC by Cre-mediated recombination and nearly pure preparations of recombinant virus were obtained typically in two weeks. Insertion of the ICP4 coding sequence alone did not restore viral replication and was only minimally better than an ICP4-null construct, whereas insertion of a CMVIE promoter-ICP4 transgene (bM24-CMV) efficiently drove viral replication. The levels of bM24-CMV replication in tumor cells varied considerably compared to hrR3 (UL39 mutant). Conclusion: Our Flip-Flop HSV-BAC system enables rapid generation of HSV vectors carrying transgene inserts. By introducing a tumor-specific-promoter-driven ICP4 cassette into pM24-BAC using this system, one should be able to generate transcriptionally-targeted oncolytic HSV vectors. We believe this system will greatly facilitate the screening of a plethora of clinically useful tumor-specific promoters in the context of oncolytic HSV vectors.Publication Cancer Stem Cell-Like Cells Derived from Malignant Peripheral Nerve Sheath Tumors(Public Library of Science, 2011) Spyra, Melanie; Kluwe, Lan; Hagel, Christian; Nguyen, Rosa; Panse, Jens; Kurtz, Andreas; Mautner, Victor Felix; Rabkin, Samuel; Demestre, MariaThis study aims to examine whether or not cancer stem cells exist in malignant peripheral nerve sheath tumors (MPNST). Cells of established lines, primary cultures and freshly dissected tumors were cultured in serum free conditions supplemented with epidermal and fibroblast growth factors. From one established human MPNST cell line, S462, cells meeting the criteria for cancer stem cells were isolated. Clonal spheres were obtained, which could be passaged multiple times. Enrichment of stem cell-like cells in these spheres was also supported by increased expression of stem cell markers such as CD133, Oct4, Nestin and NGFR, and decreased expression of mature cell markers such as CD90 and NCAM. Furthermore, cells of these clonal S462 spheres differentiated into Schwann cells, smooth muscle/fibroblast and neurons-like cells under specific differentiation-inducing cultural conditions. Finally, subcutaneous injection of the spheres into immunodeficient nude mice led to tumor formation at a higher rate compared to the parental adherent cells (66% versus 10% at 2.5×10\(^5\)). These results provide evidence for the existence of cancer stem cell-like cells in malignant peripheral nerve sheath tumors.