Person: Chellappa, Sarah
Loading...
Email Address
AA Acceptance Date
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Chellappa
First Name
Sarah
Name
Chellappa, Sarah
5 results
Search Results
Now showing 1 - 5 of 5
Publication Daily circadian misalignment impairs human cognitive performance task-dependently(Nature Publishing Group UK, 2018) Chellappa, Sarah; Morris, Christopher J.; Scheer, FrankShift work increases the risk for human errors, such that drowsiness due to shift work has contributed to major industrial disasters, including Space Shuttle Challenger, Chernobyl and Alaska Oil Spill disasters, with extraordinary socio-economical costs. Overnight operations pose a challenge because our circadian biology inhibits cognitive performance at night. Yet how the circadian system modulates cognition over multiple days under realistic shift work conditions remains to be established. Importantly, because task-specific cognitive brain regions show different 24-h circadian dynamics, we hypothesize that circadian misalignment impacts cognition task-dependently. Using a biologically-driven paradigm mimicking night shift work, with a randomized, cross-over design, we show that misalignment between the circadian pacemaker and behavioral/environmental cycles increases cognitive vulnerability on sustained attention, cognitive throughput, information processing and visual-motor performance over multiple days, compared to circadian alignment (day shifts). Circadian misalignment effects are task-dependent: while they acutely impair sustained attention with recovery after 3-days, they progressively hinder daily learning. Individuals felt sleepier during circadian misalignment, but they did not rate their performance as worse. Furthermore, circadian misalignment effects on sustained attention depended on prior sleep history. Collectively, daily circadian misalignment may provide an important biological framework for developing countermeasures against adverse cognitive effects in shift workers.Publication Commentary: Melanopsin Regulates Both Sleep-Promoting and Arousal-Promoting Responses to Light(Frontiers Media S.A., 2016) Cajochen, Christian; Chellappa, SarahPublication Subjective Mood in Young Unmedicated Depressed Women under High and Low Sleep Pressure Conditions(MDPI, 2016) Birchler-Pedross, Angelina; Frey, Sylvia; GΓΆtz, Thomas; Brunner, Patrick; Knoblauch, Vera; Wirz-Justice, Anna; Chellappa, Sarah; Cajochen, ChristianDiurnal mood variations are one of the core symptoms in depression, and total sleep deprivation (SD) can induce rapid, short-lasting clinical improvement in depressed patients. Here, we investigated if differential sleep pressure conditions impact on subjective mood levels in young women with major depressive disorder (MDD) without sleep disturbances, and in healthy controls. Eight healthy and eight MDD women underwent 40-h SD (high sleep pressure) and 40-h multiple NAP (low sleep pressure) protocols under constant routine conditions during which subjective mood was assessed every 30-min. MDD women rated overall significantly worse mood than controls, with minimal values for both groups during the biological night (ca. 4 a.m.), under high and low sleep pressure conditions. During SD, nighttime mood ratings in MDD women were lower than in controls and partially recovered during the second day of SD, but never attained control levels. The degree of this diurnal time-course in mood under SD correlated positively with sleep quality in MDD women. Our data indicate that MDD women without sleep disturbances did not exhibit a SD-induced antidepressant response, suggesting that the mood enhancement response to sleep deprivation might be related to the co-existence of sleep disturbances, which is an association that remains to be fully established.Publication Sex differences in light sensitivity impact on brightness perception, vigilant attention and sleep in humans(Nature Publishing Group UK, 2017) Chellappa, Sarah; Steiner, Roland; Oelhafen, Peter; Cajochen, ChristianArtificial light endows a βround-the-clockβ, 24-h/7-d society. Chronic exposure to light at night contributes to health hazards for humans, including disorders of sleep. Yet the influence of inter-individual traits, such as sex-differences, on light sensitivity remains to be established. Here we investigated potential sex-differences to evening light exposure of 40 lx at 6500 K (blue-enriched) or at 2500 K (non-blue-enriched), and their impact on brightness perception, vigilant attention and sleep physiology. In contrast to women, men had higher brightness perception and faster reaction times in a sustained attention task during blue-enriched light than non-blue-enriched. After blue-enriched light exposure, men had significantly higher all-night frontal NREM sleep slow-wave activity (SWA: 2β4 Hz), than women, particularly during the beginning of the sleep episode. Furthermore, brightness perception during blue-enriched light significantly predicted menβs improved sustained attention performance and increased frontal NREM SWA. Our data indicate that, in contrast to women, men show a stronger response to blue-enriched light in the late evening even at very low light levels (40lux), as indexed by increased vigilant attention and sleep EEG hallmarks. Collectively, the data indicate that sex differences in light sensitivity might play a key role for ensuring the success of individually-targeted light interventions.Publication In a Heartbeat: Light and Cardiovascular Physiology(Frontiers Media S.A., 2017) Chellappa, Sarah; Lasauskaite, Ruta; Cajochen, ChristianLight impinging on the retina fulfils a dual function: it serves for vision and it is required for proper entrainment of the endogenous circadian timing system to the 24-h day, thus influencing behaviors that promote health and optimal quality of life but are independent of image formation. The circadian pacemaker located in the suprachiasmatic nuclei modulates the cardiovascular system with an intrinsic ability to anticipate morning solar time and with a circadian nature of adverse cardiovascular events. Here, we infer that light exposure might affect cardiovascular function and provide evidence from existing research. Findings show a time-of-day dependent increase in relative sympathetic tone associated with bright light in the morning but not in the evening hours. Furthermore, dynamic light in the early morning hours can reduce the deleterious sleep-to-wake evoked transition on cardiac modulation. On the contrary, effects of numerous light parameters, such as illuminance level and wavelength of monochromatic light, on cardiac function are mixed. Therefore, in future research studies, light modalities, such as timing, duration, and its wavelength composition, should be taken in to account when testing the potential of light as a non-invasive countermeasure for adverse cardiovascular events.