Person:
Kwong, Kenneth

Loading...
Profile Picture

Email Address

AA Acceptance Date

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Kwong

First Name

Kenneth

Name

Kwong, Kenneth

Search Results

Now showing 1 - 4 of 4
  • Thumbnail Image
    Publication
    Neural Encoding of Acupuncture Needling Sensations: Evidence from a fMRI Study
    (Hindawi Publishing Corporation, 2013) Wang, Xiaoling; Chan, Suk-Tak; Fang, Jiliang; Nixon, Erika E.; Liu, Jing; Kwong, Kenneth; Rosen, Bruce; Hui, Kathleen K. S.
    Deqi response, a psychophysical response characterized by a spectrum of different needling sensations, is essential for Chinese acupuncture clinical efficacy. Previous neuroimaging research works have investigated the neural correlates of an overall deqi response by summating the scores of different needling sensations. However, the roles of individual sensations in brain activity and how they interact with each other remain to be clarified. In this study, we applied fMRI to investigate the neural correlates of individual components of deqi during acupuncture on the right LV3 (Taichong) acupoint. We selected a subset of deqi responses, namely, pressure, heaviness, fullness, numbness, and tingling. Using the individual components of deqi of different subjects as covariates in the analysis of percentage change of bold signal, pressure was found to be a striking sensation, contributing to most of negative activation of a limbic-paralimbic-neocortical network (LPNN). The similar or opposite neural activity in the heavily overlapping regions is found to be responding to different needling sensations, including bilateral LPNN, right orbitofrontal cortex, and bilateral posterior parietal cortex. These findings provide the neuroimaging evidence of how the individual needle sensations interact in the brain, showing that the modulatory effects of different needling sensations contribute to acupuncture modulations of LPNN network.
  • Thumbnail Image
    Publication
    Hypothalamus and amygdala response to acupuncture stimuli in carpal tunnel syndrome
    (Ovid Technologies (Wolters Kluwer Health), 2007) Napadow, Vitaly; Kettner, N.; Liu, J.; Li, M.; Kwong, Kenneth; Vangel, Mark; Makris, Nikolaos; Audette, Joseph; Hui, K. K.S.
    Brain processing of acupuncture stimuli in chronic neuropathic pain patients may underlie its beneficial effects. We used fMRI to evaluate verum and sham acupuncture stimulation at acupoint LI-4 in Carpal Tunnel Syndrome (CTS) patients and healthy controls (HC). CTS patients were retested after 5 weeks of acupuncture therapy. Thus, we investigated both the short-term brain response to acupuncture stimulation, as well as the influence of longer-term acupuncture therapy effects on this short-term response. CTS patients responded to verum acupuncture with greater activation in the hypothalamus and deactivation in the amygdala as compared to HC, controlling for the non-specific effects of sham acupuncture. A similar difference was found between CTS patients at baseline and after acupuncture therapy. For baseline CTS patients responding to verum acupuncture, functional connectivity was found between the hypothalamus and amygdala – the less deactivation in the amygdala, the greater the activation in the hypothalamus, and vice versa. Furthermore, hypothalamic response correlated positively with the degree of maladaptive cortical plasticity in CTS patients (inter-digit separation distance). This is the first evidence suggesting that chronic pain patients respond to acupuncture differently than HC, through a coordinated limbic network including the hypothalamus and amygdala.
  • Thumbnail Image
    Publication
    Acupuncture mobilizes the brain's default mode and its anti-correlated network in healthy subjects
    (Elsevier BV, 2009) Hui, Kathleen K.S.; Marina, Ovidiu; Claunch, Joshua D.; Nixon, Erika E.; Fang, Jiliang; Liu, Jing; Li, Ming; Napadow, Vitaly; Vangel, Mark; Makris, Nikos; Chan, Suk-Tak; Kwong, Kenneth; Rosen, Bruce
    Previous work has shown that acupuncture stimulation evokes deactivation of a limbic-paralimbic-neocortical network (LPNN) as well as activation of somatosensory brain regions. This study explores the activity and functional connectivity of these regions during acupuncture vs. tactile stimulation and vs. acupuncture associated with inadvertent sharp pain. Acupuncture during 201 scans and tactile stimulation during 74 scans for comparison at acupoints LI4, ST36 and LV3 was monitored with fMRI and psychophysical response in 48 healthy subjects. Clusters of deactivated regions in the medial prefrontal, medial parietal and medial temporal lobes as well as activated regions in the sensorimotor and a few paralimbic structures can be identified during acupuncture by general linear model analysis and seed-based cross correlation analysis. Importantly, these clusters showed virtual identity with the default mode network and the anti-correlated task-positive network in response to stimulation. In addition, the amygdala and hypothalamus, structures not routinely reported in the default mode literature, were frequently involved in acupuncture. When acupuncture induced sharp pain, the deactivation was attenuated or became activated instead. Tactile stimulation induced greater activation of the somatosensory regions but less extensive deactivation of the LPNN. These results indicate that the deactivation of the LPNN during acupuncture cannot be completely explained by the demand of attention that is commonly proposed in the default mode literature. Our results suggest that acupuncture mobilizes the anti-correlated functional networks of the brain to mediate its actions, and that the effect is dependent on the psychophysical response.
  • Thumbnail Image
    Publication
    Time-variant fMRI activity in the brainstem and higher structures in response to acupuncture
    (Elsevier BV, 2009) Napadow, Vitaly; Dhond, Rupali; Park, Kyungmo; Kim, Jieun; Makris, Nikos; Kwong, Kenneth; Harris, Richard E.; Purdon, Patrick; Kettner, Norman; Hui, Kathleen K.S.
    Acupuncture modulation of activity in the human brainstem is not well known. This structure is plagued by physiological artifact in neuroimaging experiments. In addition, most studies have used short (<15min) block designs, which miss delayed responses following longer duration stimulation. We used brainstem-focused cardiac-gated fMRI and evaluated time-variant brain response to longer duration (>30min) stimulation with verum (VA, electrostimulation at acupoint ST-36) or sham point (SPA, non-acupoint electrostimulation) acupuncture. Our results provide evidence that acupuncture modulates brainstem nuclei important to endogenous monoaminergic and opioidergic systems. Specifically, VA modulated activity in the substantia nigra (SN), nucleus raphe magnus, locus ceruleus, nucleus cuneiformis, and periaqueductal gray (PAG). Activation in the ventrolateral PAG was greater for VA compared to SPA. Linearly decreasing time-variant activation, suggesting classical habituation, was found in response to both VA and SPA in sensorimotor (SII, insula, premotor cortex) brain regions. However, VA also produced linearly time-variant activity in limbic regions (amygdala, hippocampus, and SN), which was bimodal and not likely habituation - consisting of activation in early blocks, and deactivation by the end of the run. Thus, acupuncture induces different brain response early, compared to 20–30min after stimulation. We attribute the fMRI differences between VA and SPA to more varied and stronger psychophysical response induced by VA. Our study demonstrates that acupuncture modulation of brainstem structures can be studied non-invasively in humans, allowing for comparison to animal studies. Our protocol also demonstrates a fMRI approach to study habituation and other time-variant phenomena over longer time durations.