Person: Fields, Alexander Preston
Loading...
Email Address
AA Acceptance Date
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Fields
First Name
Alexander Preston
Name
Fields, Alexander Preston
4 results
Search Results
Now showing 1 - 4 of 4
Publication Electrokinetic Trapping of Single Molecules, and Euler Buckling and Nonlinear Kinking of DNA(2013-09-30) Fields, Alexander Preston; Cohen, Adam Ezra; Murray, Andrew; Ramanathan, Sharad; Yin, Peng; Hogle, JamesI present two applications of fluorescence spectroscopy in biophysics. The first is an instrument, the anti-Brownian electrokinetic (ABEL) trap, which is capable of trapping individual small molecules in aqueous solution at room temperature. The second is an investigation of the bending mechanics of double-stranded DNA using a novel DNA structure called a "molecular vise". Both projects take advantage of the sensitivity and specificity of fluorescence spectroscopy, and both benefit from the interplay of experimental work with theoretical and computational modeling. The ABEL trap uses fluorescence microscopy to track a freely diffusing particle, and applies real-time electrokinetic feedback forces to oppose observed motion. Small molecules are difficult to trap because they diffuse quickly and because their fluorescence emission is typically weak. I describe the experimental and algorithmic approaches that enabled small-molecule fluorophores to be trapped at room temperature. I additionally derive and discuss the theory of the molecules' behavior in the trap; this mathematical work informed the design of the trapping algorithm and additionally enabled trapped molecules to be distinguished on the basis of their diffusion coefficient and electrokinetic mobility. Molecular vises are DNA hairpins that use the free energy of hybridization to exert a compressive force on a sub-persistence length segment of double-stranded DNA. In response to the applied force, this "target strand" may either remain straight or bend, depending on its flexibility and length. Experimentally, the conformation can be monitored via Förster resonance energy transfer (FRET) between appended fluorophores. The experimental results quantitatively matched the predictions of the classic wormlike chain (WLC) model of DNA elasticity at low-to-moderate salt concentrations. Higher ionic strength induced an apparent softening of the DNA which was best accounted for by a high-curvature "kinked" state. The molecular vise is exquisitely sensitive to the sequence-dependent linear and nonlinear elastic properties of dsDNA and provides a platform for studying the effects of chemical modifications and small-molecule or protein binding on these properties.Publication In Honor of W.E. Moerner: Confining Molecules for Single-Molecule Spectroscopy(Wiley-Blackwell, 2009) Cohen, Adam; Fields, Alexander Preston; Hou, Jennifer; Leslie, Sabrina R.; Shon, Min JuSingle-molecule spectroscopy provides a wealth of information on the dynamics and interactions of complex biological molecules. Yet these measurements are extremely challenging, partly because Brownian motion prevents molecules in free solution from remaining stationary. Here we describe several techniques that our lab has developed for confining single molecules for optical spectroscopy. These alternatives to surface immobilization provide confinement that is gentle enough to minimize perturbations to the molecule, but strong enough to allow long-time imaging of single fluorescent molecules, often in the presence of a high fluorescent background.Publication Convex Lens-Induced Confinement for Imaging Single Molecules(American Chemical Society (ACS), 2010) Leslie, Sabrina R.; Fields, Alexander Preston; Cohen, AdamFluorescence imaging is used to study the dynamics of a wide variety of single molecules in solution or attached to a surface. Two key challenges in this pursuit are (1) to image immobilized single molecules in the presence of a high level of fluorescent background and (2) to image freely diffusing single molecules for long times. Strategies that perform well by one measure often perform poorly by the other. Here, we present a simple modification to a wide-field fluorescence microscope that addresses both challenges and dramatically improves single-molecule imaging. The technique of convex lens-induced confinement (CLIC) restricts molecules to a wedge-shaped gap of nanoscale depth, formed between a plano-convex lens and a planar coverslip. The shallow depth of the imaging volume leads to 20-fold greater rejection of background fluorescence than is achieved with total internal reflection fluorescence (TIRF) imaging. Elimination of out-of-plane diffusion leads to an approximately 10 000-fold longer diffusion-limited observation time per molecule than is achieved with confocal fluorescence correlation spectroscopy. The CLIC system also provides a new means to determine molecular size. The CLIC system does not require any nanofabrication, nor any custom optics, electronics, or computer control.Publication Anti-Brownian Traps for Studies on Single Molecules(Elsevier BV, 2010) Fields, Alexander Preston; Cohen, AdamUntil recently, Brownian motion was seen as an immutable feature of small particles in room-temperature liquids. Molecules, viruses, organelles, and small cells jiggle incessantly due to countless collisions with thermally agitated molecules of solvent. Einstein showed in 1905 that this motion is intimately linked to the tendency of every system to relax toward thermal equilibrium. In recent years, we and others have realized that Brownian motion is not as inescapable as one might think. By tracking the motion of a small particle and applying correction forces to the particle or to the measurement apparatus, one can largely suppress the Brownian motion of particles as small as a few nanometers in diameter, in aqueous solution at room temperature. This new ability to stabilize single molecules has led to a host of studies on topics ranging from the conformational dynamics of DNA to the optical properties of metal nanoparticles. In this review, we outline the physical principles behind suppression of Brownian motion. We discuss the relative merits of several systems that have been implemented. We give examples of studies performed with our anti-Brownian Electrokinetic trap (ABEL trap) as well as other anti-Brownian traps, and we discuss prospects for future research.