Person: Huang, Christene
Loading...
Email Address
AA Acceptance Date
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Huang
First Name
Christene
Name
Huang, Christene
2 results
Search Results
Now showing 1 - 2 of 2
Publication Diphtheria toxin‐based anti‐human CD19 immunotoxin for targeting human CD19+ tumors(John Wiley and Sons Inc., 2017) Zheng, Qian; Wang, Zhaohui; Zhang, Huiping; Huang, Qi; Madsen, Joren; Sachs, David; Huang, Christene; Wang, ZhiruiCD19 is expressed on normal and neoplastic B cells and is a promising target for immunotherapy. However, there is still an unmet need to further develop novel therapeutic drugs for the treatment of the refractory/relapsing human CD19+ tumors. We have developed a diphtheria toxin‐based anti‐human CD19 immunotoxin for targeting human CD19+ tumors. We have constructed three isoforms of the CD19 immunotoxin: monovalent, bivalent, and foldback diabody. In vitro binding affinity and efficacy analysis demonstrated that the bivalent isoform had the highest binding affinity and in vitro efficacy. The in vivo efficacy of the CD19 immunotoxins was assessed using human CD19+ JeKo‐1 tumor‐bearing NOD/SCID IL‐2 receptor γ−/− (NSG) mouse model. In these animals, CD19 immunotoxins significantly prolonged the median survival from 31 days in controls to 34, 36, and 40 days in animals receiving the monovalent isoform, foldback diabody isoform, and bivalent isoform, respectively. The bivalent CD19 immunotoxin is a promising therapeutic drug candidate for targeting relapsing/refractory human CD19+ tumors.Publication Bioengineered Self-assembled Skin as an Alternative to Skin Grafts(Wolters Kluwer Health, 2016) Climov, Mihail; Medeiros, Erika; Farkash, Evan A.; Qiao, Jizeng; Rousseau, Cecile F.; Dong, Shumin; Zawadzka, Agatha; Racki, Waldemar J.; Al-Musa, Ahmad; Sachs, David; Randolph, Mark; Huang, Christene; Bollenbach, Thomas J.For patients with extensive burns or donor site scarring, the limited availability of autologous and the inevitable rejection of allogeneic skin drive the need for new alternatives. Existing engineered biologic and synthetic skin analogs serve as temporary coverage until sufficient autologous skin is available. Here we report successful engraftment of a self-assembled bilayered skin construct derived from autologous skin punch biopsies in a porcine model. Dermal fibroblasts were stimulated to produce an extracellular matrix and were then seeded with epidermal progenitor cells to generate an epidermis. Autologous constructs were grafted onto partial- and full-thickness wounds. By gross examination and histology, skin construct vascularization and healing were comparable to autologous skin grafts and were superior to an autologous bilayered living cellular construct fabricated with fibroblasts cast in bovine collagen. This is the first demonstration of spontaneous vascularization and permanent engraftment of a self-assembled bilayered bioengineered skin that could supplement existing methods of reconstruction.