Person: Gurwell, Mark
Loading...
Email Address
AA Acceptance Date
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Gurwell
First Name
Mark
Name
Gurwell, Mark
8 results
Search Results
Now showing 1 - 8 of 8
Publication Jet-Launching Structure Resolved Near the Supermassive Black Hole in M87(American Association for the Advancement of Science (AAAS), 2012) Doeleman, Sheperd; Fish, V. L.; Schenck, D. E.; Beaudoin, C.; Blundell, Raymond; Bower, G. C.; Broderick, Alithia Carol; Chamberlin, R.; Freund, R.; Friberg, P.; Gurwell, Mark; Ho, Po-Yi; Honma, M.; Inoue, M.; Krichbaum, T. P.; Lamb, Justin; Loeb, Abraham; Lonsdale, C.; Marrone, D. P.; Moran, James; Oyama, T.; Plambeck, R.; Primiani, Rurik; Rogers, A. E. E.; Smythe, D. L.; SooHoo, J.; Strittmatter, P.; Tilanus, R. P. J.; Titus, M.; Weintroub, Jonathan; Wright, Bennett Bennett; Young, K. H.; Ziurys, L. M.Approximately 10% of active galactic nuclei exhibit relativistic jets, which are powered by accretion of matter onto super massive black holes. While the measured width profiles of such jets on large scales agree with theories of magnetic collimation, predicted structure on accretion disk scales at the jet launch point has not been detected. We report radio interferometry observations at 1.3mm wavelength of the elliptical galaxy M87 that spatially resolve the base of the jet in this source. The derived size of 5.5 +/- 0.4 Schwarzschild radii is significantly smaller than the innermost edge of a retrograde accretion disk, suggesting that the M87 jet is powered by an accretion disk in a prograde orbit around a spinning black hole.Publication Fine-Scale Structure of the Quasar 3C 279 Measured with 1.3 mm Very Long Baseline Interferometry(American Astronomical Society, 2013) Lu, Ru-Sen; Fish, Vincent L.; Akiyama, Kazunori; Doeleman, Sheperd; Algaba, Juan C.; Bower, Geoffrey C.; Brinkerink, Christiaan; Chamberlin, Richard; Crew, Geoffrey; Cappallo, Roger J.; Dexter, Matt; Freund, Robert; Friberg, Per; Gurwell, Mark; Ho, Paul T. P.; Honma, Mareki; Inoue, Makoto; Jorstad, Svetlana G.; Krichbaum, Thomas P.; Loinard, Laurent; MacMahon, David; Marrone, Daniel P.; Marscher, Alan P.; Moran, James; Plambeck, Richard; Pradel, Nicolas; Primiani, Rurik; Tilanus, Remo P. J.; Titus, Michael; Weintroub, Jonathan; Wright, Melvyn; Young, Ken; Ziurys, Lucy M.We report results from five day very long baseline interferometry observations of the well-known quasar 3C 279 at 1.3mm (230 GHz) in 2011. The measured nonzero closure phases on triangles including stations in Arizona, California, and Hawaii indicate that the source structure is spatially resolved. We find an unusual inner jet direction at scales of ~1 pc extending along the northwest-southeast direction \((P.A. = 127^{\circ} \pm 3^{\circ})\), as opposed to other (previously) reported measurements on scales of a few parsecs showing inner jet direction extending to the southwest. The 1.3mm structure corresponds closely with that observed in the central region of quasi-simultaneous super-resolution Very Long Baseline Array images at 7 mm. The closure phase changed significantly on the last day when compared with the rest of observations, indicating that the inner jet structure may be variable on daily timescales. The observed new direction of the inner jet shows inconsistency with the prediction of a class of jet precession models. Our observations indicate a brightness temperature of \(\sim 8 \times 1010 K\) in the 1.3mm core, much lower than that at centimeter wavelengths. Observations with better uv coverage and sensitivity in the coming years will allow the discrimination between different structure models and will provide direct images of the inner regions of the jet with 20-30 μas (5-7 light months) resolution.Publication Persistent Asymmetric Structure of Sagittarius A* on Event Horizon Scales(American Astronomical Society, 2016) Fish, Vincent; Johnson, Michael; Doeleman, Sheperd; Broderick, Avery; Psaltis, Dimitrios; Lu, Ru-Sen; Akiyama, Kazunori; Alef, Walter; Algaba, Juan; Asada, Keiichi; Beaudoin, Christopher; Bertarini, Alessandra; Blackburn, Lindy; Blundell, Raymond; Bower, Geoffrey; Brinkerink, Christiaan; Cappallo, Roger; Chael, Andrew; Chamberlin, Richard; Chan, Chi-Kwan; Crew, Geoffrey; Dexter, Jason; Dexter, Matt; Dzib, Sergio; Falcke, Heino; Freund, Robert; Friberg, Per; Greer, Christopher; Gurwell, Mark; Ho, Paul; Honma, Mareki; Inoue, Makoto; Johannsen, Tim; Kim, Junhan; Krichbaum, Thomas; Lamb, James; León-Tavares, Jonathan; Loeb, Abraham; Loinard, Laurent; MacMahon, David; Marrone, Daniel; Moran, James; Mościbrodzka, Monika; Ortiz-León, Gisela; Oyama, Tomoaki; Özel, FeryalThe Galactic Center black hole Sagittarius A* (Sgr A*) is a prime observing target for the Event Horizon Telescope (EHT), which can resolve the 1.3 mm emission from this source on angular scales comparable to that of the general relativistic shadow. Previous EHT observations have used visibility amplitudes to infer the morphology of the millimeter-wavelength emission. Potentially much richer source information is contained in the phases. We report on 1.3 mm phase information on Sgr A* obtained with the EHT on a total of 13 observing nights over 4 years. Closure phases, the sum of visibility phases along a closed triangle of interferometer baselines, are used because they are robust against phase corruptions introduced by instrumentation and the rapidly variable atmosphere. The median closure phase on a triangle including telescopes in California, Hawaii, and Arizona is nonzero. This result conclusively demonstrates that the millimeter emission is asymmetric on scales of a few Schwarzschild radii and can be used to break 180-degree rotational ambiguities inherent from amplitude data alone. The stability of the sign of the closure phase over most observing nights indicates persistent asymmetry in the image of Sgr A* that is not obscured by refraction due to interstellar electrons along the line of sight.Publication 230 GHz VLBI observations of M87: event-horizon-scale structure at the enhanced very-high-energy γ-ray state in 2012(IOP Publishing, 2015) Akiyama, Kazunori; Lu, Ru-Sen; Fish, Vincent; Doeleman, Sheperd; Broderick, Avery; Dexter, Jason; Hada, Kazuhiro; Kino, Motoki; Nagai, Hiroshi; Honma, Mareki; Johnson, Michael; Algaba, Juan; Asada, Keiichi; Brinkerink, Christiaan; Blundell, Raymond; Bower, Geoffrey; Cappallo, Roger; Crew, Geoffrey; Dexter, Matt; Dzib, Sergio; Freund, Robert; Friberg, Per; Gurwell, Mark; Ho, Paul; Inoue, Makoto; Krichbaum, Thomas; Loinard, Laurent; MacMahon, David; Marrone, Daniel; Moran, James; Nakamura, Masanori; Nagar, Neil; Ortiz-Leon, Gisela; Plambeck, Richard; Pradel, Nicolas; Primiani, Rurik; Rogers, Alan; Roy, Alan; SooHoo, Jason; Tavares, Jonathan-León; Tilanus, Remo; Titus, Michael; Wagner, Jan; Weintroub, Jonathan; Yamaguchi, Paul; Young, Ken; Zensus, Anton; Ziurys, LucyWe report on 230 GHz (1.3 mm) VLBI observations of M87 with the Event Horizon Telescope using antennas on Mauna Kea in Hawaii, Mt. Graham in Arizona and Cedar Flat in California. For the first time, we have acquired 230 GHz VLBI interferometric phase information on M87 through measurement of closure phase on the triangle of long baselines. Most of the measured closure phases are consistent with 0◦ as expected by physically-motivated models for 230 GHz structure such as jet models and accretion disk models. The brightness temperature of the event-horizon-scale structure is ∼ 1 × 1010 K derived from the compact flux density of ∼ 1 Jy and the angular size of ∼ 40 µas ∼ 5.5 Rs, which is broadly consistent with the peak brightness of the radio cores at 1-86 GHz located within ∼ 102 Rs. Our observations occurred in the middle of an enhancement in very-high-energy (VHE) γ-ray flux, presumably originating in the vicinity of the central black hole. Our measurements, combined with results of multi-wavelength observations, favor a scenario in which the VHE region has an extended size of ∼20-60 Rs.Publication Radio and Millimeter Monitoring of Sgr A*: Spectrum, Variability, and Constraints on the G2 Encounter(IOP Publishing, 2015) Bower, Geoffrey C.; Markoff, Sera; Dexter, Jason; Gurwell, Mark; Moran, James; Brunthaler, Andreas; Falcke, Heino; Fragile, P. Chris; Maitra, Dipankar; Marrone, Dan; Peck, Alison; Rushton, Anthony; Wright, Melvyn C. H.We report new observations with the Very Large Array, Atacama Large Millimeter Array, and Submillimeter Array at frequencies from 1.0 to 355 GHz of the Galactic Center black hole, Sagittarius A*. These observations were conducted between 2012 October and 2014 November. While we see variability over the whole spectrum with an amplitude as large as a factor of 2 at millimeter wavelengths, we find no evidence for a change in the mean flux density or spectrum of Sgr A* that can be attributed to interaction with the G2 source. The absence of a bow shock at low frequencies is consistent with a cross-sectional area for G2 that is less than 2 10 ´ 29 cm2. This result fits with several model predictions including a magnetically arrested cloud, a pressure-confined stellar wind, and a stellar photosphere of a binary merger. There is no evidence for enhanced accretion onto the black hole driving greater jet and/or accretion flow emission. Finally, we measure the millimeter wavelength spectral index of Sgr A* to be flat; combined with previous measurements, this suggests that there is no spectral break between 230 and 690 GHz. The emission region is thus likely in a transition between optically thick and thin at these frequencies and requires a mix of lepton distributions with varying temperatures consistent with stratification.Publication 1.3 mm Wavelength VLBI of Sagittarius A*: Detection of Time-Variable Emission on Event Horizon Scales(IOP Publishing, 2011) Fish, Vincent L.; Doeleman, Sheperd; Beaudoin, Christopher; Blundell, Raymond; Bolin, David E.; Bower, Geoffrey C.; Chamberlin, Richard; Freund, Robert; Friberg, Per; Gurwell, Mark; Honma, Mareki; Inoue, Makoto; Krichbaum, Thomas P.; Lamb, James; Marrone, Daniel P.; Moran, James; Oyama, Tomoaki; Plambeck, Richard; Primiani, Rurik; Rogers, Alan E. E.; Smythe, Daniel L.; SooHoo, Jason; Strittmatter, Peter; Tilanus, Remo P. J.; Titus, Michael; Weintroub, Jonathan; Wright, Melvyn; Woody, David; Young, Ken; Ziurys, Lucy M.Sagittarius A*, the ~4 × 106 M ☉ black hole candidate at the Galactic center, can be studied on Schwarzschild radius scales with (sub)millimeter wavelength very long baseline interferometry (VLBI). We report on 1.3 mm wavelength observations of Sgr A* using a VLBI array consisting of the JCMT on Mauna Kea, the Arizona Radio Observatory's Submillimeter Telescope on Mt. Graham in Arizona, and two telescopes of the CARMA array at Cedar Flat in California. Both Sgr A* and the quasar calibrator 1924–292 were observed over three consecutive nights, and both sources were clearly detected on all baselines. For the first time, we are able to extract 1.3 mm VLBI interferometer phase information on Sgr A* through measurement of closure phase on the triangle of baselines. On the third night of observing, the correlated flux density of Sgr A* on all VLBI baselines increased relative to the first two nights, providing strong evidence for time-variable change on scales of a few Schwarzschild radii. These results suggest that future VLBI observations with greater sensitivity and additional baselines will play a valuable role in determining the structure of emission near the event horizon of Sgr A*.Publication First Detection of Millimeter/Submillimeter Extragalactic H2O Maser Emission(IOP Publishing, 2005) Humphreys, E. M. L.; Greenhill, L. J.; Reid, M. J.; Beuther, H.; Moran, James; Gurwell, Mark; Wilner, David; Kondratko, P. T.We report the first detection of an extragalactic millimeter wavelength H2O maser at 183 GHz towards NGC 3079 using the Submillimeter Array (SMA), and a tentative submillimeter wave detection of the 439 GHz maser towards the same source using the James Clerk Maxwell Telescope (JCMT). These H2O transitions are known to exhibit maser emission in star-forming regions and evolved stars. NGC 3079 is a well-studied nuclear H2O maser source at 22 GHz with a timevariable peak flux density in the range 3 – 12 Jy. The 183 GHz H2O maser emission, with peak flux density ∼0.5 Jy (7σ detection), also originates from the nuclear region of NGC 3079 and is spatially coincident with the dust continuum peak at 193 GHz (53 mJy integrated). Peak emission at both 183 and 439 GHz occurs in the same range of velocity as that covered by the 22 GHz spectrum. We estimate the gas to dust ratio of the nucleus of NGC 3079 to be ≈150, comparable to the Galactic value of 160. Discovery of maser emission in an active galactic nucleus beyond the long-known 22 GHz transition opens the possibility of future position-resolved radiative transfer modeling of accretion disks and outflows < 1 pc from massive black holes.Publication Submillimeter Array 440 μm/690 GHz Line and Continuum Observations of Orion KL(IOP Publishing, 2006) Beuther, H.; Zhang, Qizhou; Reid, Mark; Hunter, T. R.; Gurwell, Mark; Wilner, David; Zhao, Jun-Hui; Shinnaga, H.; Keto, Eric; Ho, P. T. P.; Moran, James; Liu, S.‐Y.Submillimeter Array observations of Orion-KL at ∼ 1′′ resolution in the 440 µm/690 GHz band reveal new insights about the continuum and line emission of the region. The 440 µm continuum flux density measurement from source I allows us to differentiate among the various proposed physical models: Source I can be well modeled by a “normal” protostellar SED consisting of a proton-electron free-free emission component at low frequencies and a strong dust component in the submillimeter bands. Furthermore, we find that the protostellar object SMA1 is clearly distinct from the hot core. The non-detection of SMA1 at cm and infrared wavelengths suggests that it may be one of the youngest sources in the entire Orion-KL region. The molecular line maps show emission mainly from the sources I, SMA1 and the hot core peak position. An analysis of the CH 3CN(37 K − 36 K) K-ladder ( K = 0...3) indicates a warm gas component of the order 600 ± 200K. In addition, we detect a large fraction ( ∼ 58%) of unidentified lines and discuss the difficulties of line identifications at these frequencies.