Person: Zhao, Mengxia
Loading...
Email Address
AA Acceptance Date
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Zhao
First Name
Mengxia
Name
Zhao, Mengxia
Search Results
Now showing 1 - 2 of 2
Publication A Paper-Based “Pop-up” Electrochemical Device for Analysis of Beta-Hydroxybutyrate(American Chemical Society (ACS), 2016) Wang, Chien-Chung; Hennek, Jonathan; Ainla, Alar; Kumar, Ashok Ashwin; Lan, Wen-Jie; Im, Judy S; Smith, Barbara S.; Zhao, Mengxia; Whitesides, GeorgeThis paper describes the design and fabrication of a “pop-up” electrochemical paper-based analytical device (pop-up-EPAD) to measure beta-hydroxybutyrate (BHB)—a key biomarker for diabetic ketoacidosis—using a commercial glucometer. Pop-up-EPADs are inspired by pop-up greeting cards and children's books. They are made from a single sheet of paper folded into a three-dimensional (3D) device that changes shape, and fluidic and electrical connectivity, by simply folding and unfolding the structure. The reconfigurable 3D structure makes it possible to change the fluidic path and to control timing; it also provides mechanical support for the folded and unfolded structures that enables good registration and repeatability on folding. A pop-up-EPAD designed to detect BHB shows performance comparable to commercially available plastic test strips over the clinically relevant range of BHB in blood when used with a commercial glucometer that integrates the ability to measure glucose and BHB (combination BHB/glucometer). With simple modifications of the electrode and fluid path design, the pop-up-EPAD also detects BHB using a simple glucometer—a device that is much more available than combination BHB/glucometers. Strategies that use a “3D pop-up”—that is, large-scale changes a 3D structure and fluidic paths—by folding/unfolding add functionality (e.g., controlled timing, fluidic handling and path programming, control over complex sequences of steps, and alterations in electrical connectivity) to EPADs, and should enable the development of new classes of paper-based diagnostic de-vices.Publication Autocatalytic, bistable, oscillatory networks of biologically relevant organic reactions(Springer Nature, 2016) Semenov, Sergey; Kraft, Lewis J.; Ainla, Alar; Zhao, Mengxia; Baghbanzadeh, Mostafa; Campbell, Victoria; Kang, Kyungtae; Fox, Jerome Michael; Whitesides, GeorgeNetworks of organic chemical reactions are centrally important in life, and were likely to have played a central role in its origins. Network dynamics regulate cell division, circadian rhythms, nerve impulses, chemotaxis, and guide development of organisms. Although out-of-equilibrium networks of chemical reactions have the potential to display emergent network dynamics such as spontaneous pattern formation, bistability, and periodic oscillations, the principles that enable networks of organic reactions to develop complex behaviors are incompletely understood. Here we describe a network of biologically relevant organic reactions (amide formation, thiolate-thioester exchange, thiolate-disulfide interchange, and conjugate addition) that displays bistability and oscillations in concentrations of organic thiols and amides. Oscillations arise from the interaction between three subcomponents of the network: (i) an autocatalytic cycle that generates thiols and amides from thioesters and dialkyl disulfides; (ii) a trigger that controls autocatalytic growth; and (iii) inhibitory processes that remove activating thiol species produced during the autocatalytic cycle. In contrast to previous studies demonstrating oscillations and bistability using highly evolved biomolecules (i.e., enzymes and DNA) or inorganic molecules of questionable biochemical relevance (e.g. those used in Belousov-Zhabotinsky-type reactions), the organic molecules used in our network are relevant to current metabolism and similar to those that might have existed on early Earth. By using small organic molecules to build a network of organic reactions with autocatalytic, bistable, and oscillatory behavior, we identified principles that clarify how dynamic networks relevant to life might possibly have developed. In the future, modifications of this network will clarify the influence of molecular structure on the dynamics of reaction networks, and may enable the design of biomimetic networks, and of synthetic self-regulating and evolving chemical systems.