Person:
Bronson, Roderick

Loading...
Profile Picture

Email Address

AA Acceptance Date

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Bronson

First Name

Roderick

Name

Bronson, Roderick

Search Results

Now showing 1 - 10 of 52
  • Publication
    p53 Controls Radiation-Induced Gastrointestinal Syndrome in Mice Independent of Apoptosis
    (American Association for the Advancement of Science (AAAS), 2009-12-17) Kirsch, David G.; Santiago, Philip M.; Di Tomaso, Emmanuelle; Sullivan, Julie M.; Hou, Wu-Shiun; Dayton, Talya; Jeffords, Laura B.; Sodha, Pooja; Mercer, Kim; Cohen, Rhianna; Takeushi, Osamu; Takeuchi, Osamu; Korsmeyer, Stanley J.; Bronson, Roderick; Kim, Carla; Haigis, Kevin; Jain, Rakesh; Jacks, Tyler
    Acute exposure to ionizing radiation can cause lethal damage to the gastrointestinal (GI) tract, a condition called the GI syndrome. Whether the target cells mediating the GI syndrome are derived from the epithelium or endothelium, and whether the target cells die by apoptosis or other mechanisms, are controversial issues. Studying mouse models, we found that selective deletion of the pro-apoptotic genes Bak1 and Bax from the GI epithelium or from endothelial cells did not protect mice from developing the GI syndrome after subtotal body gamma irradiation. In contrast, selective deletion of p53 from the GI epithelium, but not endothelial cells, sensitized irradiated mice to the GI syndrome. Transgenic mice overexpressing p53 in all tissues were protected from the GI syndrome after irradiation. These results suggest that the GI syndrome is caused by death of GI epithelial cells by a mechanism that is regulated by p53 but independent of apoptosis.
  • Thumbnail Image
    Publication
    Genetic Interaction between Tmprss2-ERG Gene Fusion and Nkx3.1-Loss Does Not Enhance Prostate Tumorigenesis in Mouse Models
    (Public Library of Science, 2015) Linn, Douglas E.; Bronson, Roderick; Li, Zhe
    Gene fusions involving ETS family transcription factors (mainly TMPRSS2-ERG and TMPRSS2-ETV1 fusions) have been found in ~50% of human prostate cancer cases. Although expression of TMPRSS2-ERG or TMPRSS2-ETV1 fusion alone is insufficient to initiate prostate tumorigenesis, they appear to sensitize prostate epithelial cells for cooperation with additional oncogenic mutations to drive frank prostate adenocarcinoma. To search for such ETS-cooperating oncogenic events, we focused on a well-studied prostate tumor suppressor NKX3.1, as loss of NKX3.1 is another common genetic alteration in human prostate cancer. Previous studies have shown that deletions at 8p21 (harboring NKX3.1) and 21q22 (resulting in TMPRSS2-ERG fusion) were both present in a subtype of prostate cancer cases, and that ERG can lead to epigenetic silencing of NKX3.1 in prostate cancer cells, whereas NKX3.1 can in turn negatively regulate TMPRSS2-ERG fusion expression via suppression of the TMPRSS2 promoter activity. We recently generated knockin mouse models for TMPRSS2-ERG and TMPRSS2-ETV1 fusions, utilizing the endogenous Tmprss2 promoter. We crossed these knockin models to an Nkx3.1 knockout mouse model. In Tmprss2-ERG;Nkx3.1+/- (or -/-) male mice, although we observed a slight but significant upregulation of Tmprss2-ERG fusion expression upon Nkx3.1 loss, we did not detect any significant cooperation between these two genetic events to enhance prostate tumorigenesis in vivo. Furthermore, retrospective analysis of a previously published human prostate cancer dataset revealed that within ERG-overexpressing prostate cancer cases, NKX3.1 loss or deletion did not predict biochemical relapse after radical prostatectomy. Collectively, these data suggest that although TMPRSS2-ERG fusion and loss of NKX3.1 are among the most common mutational events found in prostate cancer, and although each of them can sensitize prostate epithelial cells for cooperating with other oncogenic events, these two events themselves do not appear to cooperate at a significant level in vivo to enhance prostate tumorigenesis.
  • Thumbnail Image
    Publication
    Contribution of classical end-joining to PTEN inactivation in p53-mediated glioblastoma formation and drug-resistant survival
    (Nature Publishing Group, 2017) Kang, Youn-Jung; Balter, Barbara; Csizmadia, Eva; Haas, Brian; Sharma, Himanshu; Bronson, Roderick; Yan, Catherine
    DNA repair gene defects are found in virtually all human glioblastomas, but the genetic evidence for a direct role remains lacking. Here we demonstrate that combined inactivation of the XRCC4 non-homologous end-joining (NHEJ) DNA repair gene and p53 efficiently induces brain tumours with hallmark characteristics of human proneural/classical glioblastoma. The murine tumours exhibit PTEN loss of function instigated by reduced PTEN mRNA, and increased phosphorylated inactivation and stability as a consequence of aberrantly elevated CK2 provoked by p53 ablation and irrevocably deregulated by NHEJ inactivation. This results in DNA damage-resistant cytoplasmic PTEN and CK2 expression, and the attenuation of DNA repair genes. CK2 inhibition restores PTEN nuclear distribution and DNA repair activities and impairs tumour but not normal cell survival. These observations demonstrate that NHEJ contributes to p53-mediated glioblastoma suppression, and reveal a crucial role for PTEN in the early DNA damage signalling cascade, the inhibition of which promotes tumorigenicity and drug-resistant survival.
  • Thumbnail Image
    Publication
    Induced p53 loss in mouse luminal cells causes clonal expansion and development of mammary tumours
    (Nature Publishing Group, 2017) Tao, Luwei; Xiang, Dongxi; Xie, Ying; Bronson, Roderick; Li, Zhe
    Most breast cancers may have a luminal origin. TP53 is one of the most frequently mutated genes in breast cancers. However, how p53 deficiency contributes to breast tumorigenesis from luminal cells remains elusive. Here we report that induced p53 loss in Krt8+ mammary luminal cells leads to their clonal expansion without directly affecting their luminal identity. All induced mice develop mammary tumours with 9qA1 (Yap1) and/or 6qA2 (Met) amplification(s). These tumours exhibit a mammary stem cell (MaSC)-like expression signature and most closely resemble claudin-low breast cancer. Thus, although p53 does not directly control the luminal fate, its loss facilitates acquisition of MaSC-like properties by luminal cells and predisposes them to development of mammary tumours with loss of luminal identity. Our data also suggest that claudin-low breast cancer can develop from luminal cells, possibly via a basal-like intermediate state, although further study using a different luminal promoter is needed to fully support this conclusion.
  • Thumbnail Image
    Publication
    Rapid modeling of cooperating genetic events in cancer through somatic genome editing
    (2014) Sánchez-Rivera, Francisco J.; Papagiannakopoulos, Thales; Romero, Rodrigo; Tammela, Tuomas; Bauer, Matthew R.; Bhutkar, Arjun; Joshi, Nikhil S.; Subbaraj, Lakshmipriya; Bronson, Roderick; Xue, Wen; Jacks, Tyler
    Cancer is a multistep process that involves mutations and other alterations in oncogenes and tumor suppressor genes1. Genome sequencing studies have identified a large collection of genetic alterations that occur in human cancers2–4. However, the determination of which mutations are causally related to tumorigenesis remains a major challenge. Here we describe a novel CRISPR/Cas9-based approach for rapid functional investigation of candidate genes in well-established autochthonous mouse models of cancer. Using a KrasG12D-driven lung cancer model5, we performed functional characterization of a panel of tumor suppressor genes with known loss-of-function alterations in human lung cancer. Cre-dependent somatic activation of oncogenic KrasG12D combined with CRISPR/Cas9-mediated genome editing of tumor suppressor genes resulted in lung adenocarcinomas with distinct histopathological and molecular features. This rapid somatic genome engineering approach enables functional characterization of putative cancer genes in the lung and other tissues using autochthonous mouse models. We anticipate that this approach can be used to systematically dissect the complex catalog of mutations identified in cancer genome sequencing studies.
  • Thumbnail Image
    Publication
    ALKBH7 drives a tissue and sex-specific necrotic cell death response following alkylation-induced damage
    (Nature Publishing Group, 2017) Jordan, Jennifer J; Chhim, Sophea; Margulies, Carrie M; Allocca, Mariacarmela; Bronson, Roderick; Klungland, Arne; Samson, Leona D; Fu, Dragony
    Regulated necrosis has emerged as a major cell death mechanism in response to different forms of physiological and pharmacological stress. The AlkB homolog 7 (ALKBH7) protein is required for regulated cellular necrosis in response to chemotherapeutic alkylating agents but its role within a whole organism is unknown. Here, we show that ALKBH7 modulates alkylation-induced cellular death through a tissue and sex-specific mechanism. At the whole-animal level, we find that ALKBH7 deficiency confers increased resistance to MMS-induced toxicity in male but not female mice. Moreover, ALKBH7-deficient mice exhibit protection against alkylation-mediated cytotoxicity in retinal photoreceptor and cerebellar granule cells, two cell types that undergo necrotic death through the initiation of the base excision repair pathway and hyperactivation of the PARP1/ARTD1 enzyme. Notably, the protection against alkylation-induced cerebellar degeneration is specific to ALKBH7-deficient male but not female mice. Our results uncover an in vivo role for ALKBH7 in mediating a sexually dimorphic tissue response to alkylation damage that could influence individual responses to chemotherapies based upon alkylating agents.
  • Thumbnail Image
    Publication
    Erratum: Niche-localized tumor cells are protected from HER2-targeted therapy via upregulation of an anti-apoptotic program in vivo
    (Nature Publishing Group UK, 2017) Zoeller, Jason; Bronson, Roderick; Selfors, Laura; Mills, Gordon B.; Brugge, Joan
  • Thumbnail Image
    Publication
    Keap1 loss promotes Kras-driven lung cancer and results in a dependence on glutaminolysis
    (2017) Romero, Rodrigo; Sayin, Volkan I.; Davidson, Shawn M.; Bauer, Matthew R.; Singh, Simranjit X.; LeBoeuf, Sarah E.; Karakousi, Triantafyllia R.; Ellis, Donald C.; Bhutkar, Arjun; Sanchez-Rivera, Francisco J.; Subbaraj, Lakshmipriya; Martinez, Britney; Bronson, Roderick; Prigge, Justin R.; Schmidt, Edward E.; Thomas, Craig J.; Goparaju, Chandra; Davies, Angela; Dolgalev, Igor; Heguy, Adriana; Allaj, Viola; Poirier, John T.; Moreira, Andre L.; Rudin, Charles M.; Pass, Harvey I.; Vander Heiden, Matthew G.; Jacks, Tyler; Papagiannakopoulos, Thales
    Treating KRAS-mutant lung adenocarcinoma (LUAD) remains a major challenge in cancer treatment given the difficulties associated with directly inhibiting the KRAS oncoprotein1. One approach to addressing this challenge is to define frequently co-occurring mutations with KRAS, which themselves may lead to therapeutic vulnerabilities in tumors. Approximately 20% of KRAS-mutant LUAD tumors carry loss-of-function (LOF) mutations in Kelch-like ECH-associated protein 1 (KEAP1)2-4, a negative regulator of nuclear factor erythroid 2-like 2 (NFE2L2; hereafter NRF2), which is the master transcriptional regulator of the endogenous antioxidant response5-10. The high frequency of mutations in KEAP1 suggests an important role for the oxidative stress response in lung tumorigenesis. Using a CRISPR/Cas9-based approach in a mouse model of Kras-driven LUAD we examined the effects of Keap1 loss in lung cancer progression. We show that loss of Keap1 hyper-activates Nrf2 and promotes Kras-driven LUAD. Combining CRISPR/Cas9-based genetic screening and metabolomic analyses, we show that Keap1/Nrf2-mutant cancers are dependent on increased glutaminolysis, and this property can be therapeutically exploited through the pharmacological inhibition of glutaminase. Finally, we provide a rationale for sub-stratification of human lung cancer patients with KRAS-KEAP1 or -NRF2-mutant tumors as likely to respond to glutaminase inhibition.
  • Thumbnail Image
    Publication
    FOXO protects against age‐progressive axonal degeneration
    (John Wiley and Sons Inc., 2017) Hwang, Inah; Oh, Hwanhee; Santo, Evan; Kim, Do‐Yeon; Chen, John; Bronson, Roderick; Locasale, Jason W.; Na, Yoonmi; Lee, Jaclyn; Reed, Stewart; Toth, Miklos; Yu, Wai H.; Muller, Florian L.; Paik, Jihye
    Summary Neurodegeneration resulting in cognitive and motor impairment is an inevitable consequence of aging. Little is known about the genetic regulation of this process despite its overriding importance in normal aging. Here, we identify the Forkhead Box O (FOXO) transcription factor 1, 3, and 4 isoforms as a guardian of neuronal integrity by inhibiting age‐progressive axonal degeneration in mammals. FOXO expression progressively increased in aging human and mouse brains. The nervous system‐specific deletion of Foxo transcription factors in mice accelerates aging‐related axonal tract degeneration, which is followed by motor dysfunction. This accelerated neurodegeneration is accompanied by levels of white matter astrogliosis and microgliosis in middle‐aged Foxo knockout mice that are typically only observed in very old wild‐type mice and other aged mammals, including humans. Mechanistically, axonal degeneration in nerve‐specific Foxo knockout mice is associated with elevated mTORC1 activity and accompanying proteotoxic stress due to decreased Sestrin3 expression. Inhibition of mTORC1 by rapamycin treatment mimics FOXO action and prevented axonal degeneration in Foxo knockout mice with accelerated nervous system aging. Defining this central role for FOXO in neuroprotection during mammalian aging offers an invaluable window into the aging process itself.
  • Thumbnail Image
    Publication
    Naked Mole Rat Induced Pluripotent Stem Cells and Their Contribution to Interspecific Chimera
    (Elsevier, 2017) Lee, Sang-Goo; Mikhalchenko, Aleksei E.; Yim, Sun Hee; Lobanov, Alexei V.; Park, Jin-Kyu; Choi, Kwang-Hwan; Bronson, Roderick; Lee, Chang-Kyu; Park, Thomas J.; Gladyshev, Vadim
    Summary Naked mole rats (NMRs) are exceptionally long-lived, cancer-resistant rodents. Identifying the defining characteristics of these traits may shed light on aging and cancer mechanisms. Here, we report the generation of induced pluripotent stem cells (iPSCs) from NMR fibroblasts and their contribution to mouse-NMR chimeric embryos. Efficient reprogramming could be observed under N2B27+2i conditions. The iPSCs displayed a characteristic morphology, expressed pluripotent markers, formed embryoid bodies, and showed typical differentiation patterns. Interestingly, NMR embryonic fibroblasts and the derived iPSCs had propensity for a tetraploid karyotype and were resistant to forming teratomas, but within mouse blastocysts they contributed to both interspecific placenta and fetus. Gene expression patterns of NMR iPSCs were more similar to those of human than mouse iPSCs. Overall, we uncovered unique features of NMR iPSCs and report a mouse-NMR chimeric model. The iPSCs and associated cell culture systems can be used for a variety of biological and biomedical applications.