Person:
Cottini, Francesca

Loading...
Profile Picture

Email Address

AA Acceptance Date

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Cottini

First Name

Francesca

Name

Cottini, Francesca

Search Results

Now showing 1 - 4 of 4
  • Thumbnail Image
    Publication
    Combination of a Selective HSP90α/β Inhibitor and a RAS-RAF-MEK-ERK Signaling Pathway Inhibitor Triggers Synergistic Cytotoxicity in Multiple Myeloma Cells
    (Public Library of Science, 2015) Suzuki, Rikio; Kikuchi, Shohei; Harada, Takeshi; Mimura, Naoya; Minami, Jiro; Ohguchi, Hiroto; Yoshida, Yasuhiro; Sagawa, Morihiko; Gorgun, Gullu; Cirstea, Diana; Cottini, Francesca; Jakubikova, Jana; Tai, Yu-Tzu; Chauhan, Dharminder; Richardson, Paul; Munshi, Nikhil; Ando, Kiyoshi; Utsugi, Teruhiro; Hideshima, Teru; Anderson, Kenneth
    Heat shock protein (HSP)90 inhibitors have shown significant anti-tumor activities in preclinical settings in both solid and hematological tumors. We previously reported that the novel, orally available HSP90α/β inhibitor TAS-116 shows significant anti-MM activities. In this study, we further examined the combination effect of TAS-116 with a RAS-RAF-MEK-ERK signaling pathway inhibitor in RAS- or BRAF-mutated MM cell lines. TAS-116 monotherapy significantly inhibited growth of RAS-mutated MM cell lines and was associated with decreased expression of downstream target proteins of the RAS-RAF-MEK-ERK signaling pathway. Moreover, TAS-116 showed synergistic growth inhibitory effects with the farnesyltransferase inhibitor tipifarnib, the BRAF inhibitor dabrafenib, and the MEK inhibitor selumetinib. Importantly, treatment with these inhibitors paradoxically enhanced p-C-Raf, p-MEK, and p-ERK activity, which was abrogated by TAS-116. TAS-116 also enhanced dabrafenib-induced MM cytotoxicity associated with mitochondrial damage-induced apoptosis, even in the BRAF-mutated U266 MM cell line. This enhanced apoptosis in RAS-mutated MM triggered by combination treatment was observed even in the presence of bone marrow stromal cells. Taken together, our results provide the rationale for novel combination treatment with HSP90α/β inhibitor and RAS-RAF-MEK-ERK signaling pathway inhibitors to improve outcomes in patients with in RAS- or BRAF-mutated MM.
  • Thumbnail Image
    Publication
    RESCUE OF HIPPO CO-ACTIVATOR YAP1 TRIGGERS DNA DAMAGE-INDUCED APOPTOSIS IN HEMATOLOGICAL CANCERS
    (2014) Cottini, Francesca; Hideshima, Teru; Xu, Chunxiao; Sattler, Martin; Dori, Martina; Agnelli, Luca; Hacken, Elisa ten; Bertilaccio, Maria Teresa; Antonini, Elena; Neri, Antonino; Ponzoni, Maurilio; Marcatti, Magda; Richardson, Paul; Carrasco, Ruben; Kimmelman, Alec C.; Wong, Kwok-Kin; Caligaris-Cappio, Federico; Blandino, Giovanni; Kuehl, W. Michael; Anderson, Kenneth; Tonon, Giovanni
    Oncogene–induced DNA damage elicits genomic instability in epithelial cancer cells, but apoptosis is blocked through inactivation of the tumor suppressor p53. In hematological cancers, the relevance of ongoing DNA damage and mechanisms by which apoptosis is suppressed are largely unknown. We found pervasive DNA damage in hematologic malignancies including multiple myeloma, lymphoma and leukemia, which leads to activation of a p53–independent, pro-apoptotic network centered on nuclear relocalization of ABL1 kinase. Although nuclear ABL1 triggers cell death through its interaction with the Hippo pathway co–activator YAP1 in normal cells, we show that low YAP1 levels prevent nuclear ABL1–induced apoptosis in these hematologic malignancies. YAP1 is under the control of a serine–threonine kinase, STK4. Importantly, genetic inactivation of STK4 restores YAP1 levels, triggering cell death in vitro and in vivo. Our data therefore identify a novel synthetic–lethal strategy to selectively target cancer cells presenting with endogenous DNA damage and low YAP1 levels.
  • Thumbnail Image
    Publication
    Antitumor activities of selective HSP90α/β inhibitor, TAS-116, in combination with bortezomib in multiple myeloma
    (2014) Suzuki, Rikio; Hidehsima, Teru; Mimura, Naoya; Minami, Jiro; Ohguchi, Hiroto; Kikuchi, Shohei; Yoshida, Yasuhiro; Gorgun, Gullu; Cirstea, Diana; Cottini, Francesca; Jakubikova, Jana; Tai, Yu-Tzu; Chauhan, Dharminder; Richardson, Paul; Munshi, Nikhil; Utsugi, Teruhiro; Anderson, Kenneth
  • Publication
    Class IIa HDAC inhibition enhances ER stress-mediated cell death in multiple myeloma
    (Springer Science and Business Media LLC, 2015-03-24) Kikuchi, Shohei; Suzuki, Rikio; Ohguchi, Hiroto; Yoshida, Yashiro; Lu, Duo; Cottini, Francesca; Jakubikova, Jana; Bianchi, Giada; Harada, Takeshi; Gorgun, Guliu; Tai, Yu-Tzu; Richardson, Paul; Hideshima, Teru; Anderson, Kenneth
    Histone deacetylase (HDAC) inhibitors have been extensively investigated as therapeutic agents in cancer. However, the biologic role of class IIa HDACs (HDAC4, 5, 7 and 9) in cancer cells, including multiple myeloma (MM), remains unclear. Recent studies show HDAC4 interacts with activating transcription factor 4 (ATF4) and inhibits activation of endoplasmic reticulum (ER) stress associated proapoptotic transcription factor C/EBP homologous protein (CHOP). In this study, we hypothesized HDAC4 knockdown and/or inhibition could enhance apoptosis in MM cells under ER stress condition by upregulating ATF4, followed by CHOP. HDAC4 knockdown showed modest cell growth inhibition; however, it markedly enhanced cytotoxicity induced by either tunicamycin or carfilzomib (CFZ), associated with upregulating ATF4 and CHOP. For pharmacological inhibition of HDAC4, we employed a novel and selective class IIa HDAC inhibitor TMP269, alone and in combination with CFZ. As with HDAC4 knockdown, TMP269 significantly enhanced cytotoxicity induced by CFZ in MM cell lines, upregulating ATF4 and CHOP and inducing apoptosis. Conversely, enhanced cytotoxicity was abrogated by ATF4 knockdown, confirming ATF4 plays a pivotal role mediating cytotoxicity in this setting. These results provide the rationale for novel treatment strategies combining class IIa HDAC inhibitors with ER stressor, including proteasome inhibitors, to improve patient outcome in MM.