Person: Qi, Chunhua
Loading...
Email Address
AA Acceptance Date
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Qi
First Name
Chunhua
Name
Qi, Chunhua
12 results
Search Results
Now showing 1 - 10 of 12
Publication An Old Disk Still Capable of Forming a Planetary System(Nature Publishing Group, 2013) Bergin, Edwin A.; Cleeves, L. Ilsedore; Gorti, Uma; Zhang, Ke; Blake, Geoffrey A.; Green, Joel D.; Andrews, Sean; Evans II, Neal J.; Henning, Thomas; Oberg, Karin; Pontoppidan, Klaus; Qi, Chunhua; Salyk, Colette; van Dishoeck, Ewine F.From the masses of the planets orbiting the Sun, and the abundance of elements relative to hydrogen, it is estimated that when the Solar System formed, the circumstellar disk must have had a minimum mass of around 0.01 solar masses within about 100 astronomical units of the star. (One astronomical unit is the Earth–Sun distance.) The main constituent of the disk, gaseous molecular hydrogen, does not efficiently emit radiation from the disk mass reservoir, and so the most common measure of the disk mass is dust thermal emission and lines of gaseous carbon monoxide. Carbon monoxide emission generally indicates properties of the disk surface, and the conversion from dust emission to gas mass requires knowledge of the grain properties and the gas-to-dust mass ratio, which probably differ from their interstellar values. As a result, mass estimates vary by orders of magnitude, as exemplified by the relatively old (3–10 million years) star TW Hydrae, for which the range is 0.0005–0.06 solar masses. Here we report the detection of the fundamental rotational transition of hydrogen deuteride from the direction of TW Hydrae. Hydrogen deuteride is a good tracer of disk gas because it follows the distribution of molecular hydrogen and its emission is sensitive to the total mass. The detection of hydrogen deuteride, combined with existing observations and detailed models, implies a disk mass of more than 0.05 solar masses, which is enough to form a planetary system like our own.Publication H2CO and N2H+ in Protoplanetary Disks: Evidence for a CO-Ice Regulated Chemistry(IOP Publishing, 2013) Qi, Chunhua; Oberg, Karin; Wilner, DavidWe present Submillimeter Array observations of H2CO and N2H+ emission in the disks around the T Tauri star TW Hya and the Herbig Ae star HD 163296 at 2"-6" resolution and discuss the distribution of these species with respect to CO freeze-out. The H2CO and N2H+ emission toward HD 163296 does not peak at the continuum emission center that marks the stellar position but is instead significantly offset. Using a previously developed model for the physical structure of this disk, we show that the H2CO observations are reproduced if H2CO is present predominantly in the cold outer disk regions. A model where H2CO is present only beyond the CO snow line (estimated at a radius of 160 AU) matches the observations well. We also show that the average H2CO excitation temperature, calculated from two transitions of H2CO observed in these two disks and a larger sample of disks around T Tauri stars in the DISCS (the Disk Imaging Survey of Chemistry with SMA) program, is consistent with the CO freeze-out temperature of 20 K. In addition, we show that N2H+ and H2CO line fluxes in disks are strongly correlated, indicative of co-formation of these species across the sample. Taken together, these results imply that H2CO and N2H+ are generally present in disks only at low temperatures where CO depletes onto grains, consistent with fast destruction of N2H+ by gas-phase CO, and in situ formation of H2CO through hydrogenation of CO ice. In this scenario H2CO, CH3OH and N2H+ emission in disks should appear as rings with the inner edge at the CO midplane snow line. This prediction can be tested directly using observations from ALMA with higher resolution and better sensitivity.Publication First Detection of c-C3H2 in a Circumstellar Disk(IOP Publishing, 2013) Qi, Chunhua; Oberg, Karin; Wilner, David; Rosenfeld, KatherineWe report the first detection of c-C3H2 in a circumstellar disk. The c-C3H2 J = 6-5 line (217.882 GHz) is detected and imaged through Atacama Large Millimeter Array (ALMA) Science Verification observations toward the disk around the Herbig Ae star HD 163296 at 0.''8 resolution. The emission is consistent with that arising from a Keplerian rotating disk. Two additional c-C3H2 transitions are also tentatively detected, bolstering the identification of this species, but with insufficient signal-to-noise ratio to constrain the spatial distribution. Using a previously developed model for the physical structure of this disk, we fit a radial power-law distribution model to the c-C3H2 6-5 emission and find that c-C3H2 is present in a ring structure from an inner radius of about 30 AU to an outer radius of about 165 AU. The column density is estimated to be 1012-1013 cm–2. The clear detection and intriguing ring structure suggest that c-C3H2 has the potential to become a useful probe of radiation penetration in disks.Publication Imaging of the CO Snow Line in a Solar Nebula Analog(American Association for the Advancement of Science (AAAS), 2013) Qi, Chunhua; Oberg, Karin; Wilner, David; D'Alessio, Paola; Bergin, E.; Andrews, Sean; Blake, G. A.; Hogerheijde, M. R.; van Dishoeck, E. F.Planets form in the disks around young stars. Their formation efficiency and composition are intimately linked to the protoplanetary disk locations of “snow lines” of abundant volatiles. We present chemical imaging of the carbon monoxide (CO) snow line in the disk around TW Hya, an analog of the solar nebula, using high spatial and spectral resolution Atacama Large Millimeter/Submillimeter Array observations of diazenylium (N2H+), a reactive ion present in large abundance only where CO is frozen out. The N2H+ emission is distributed in a large ring, with an inner radius that matches CO snow line model predictions. The extracted CO snow line radius of ∼30 astronomical units helps to assess models of the formation dynamics of the solar system, when combined with measurements of the bulk composition of planets and comets.Publication Constraining the X-ray and cosmic ray ionization chemistry of the TW Hya protoplanetary disk: evidence for a sub-interstellar cosmic-ray rate.(IOP Publishing, 2015) Cleeves, Lauren; Bergin, Edwin A.; Qi, Chunhua; Adams, Fred C.; Oberg, KarinWe present an observational and theoretical study of the primary ionizing agents (cosmic rays and X-rays) in the TW Hya protoplanetary disk. We use a set of resolved and unresolved observations of molecular ions and other molecular species, encompassing eleven lines total, in concert with a grid of disk chemistry models. The molecular ion constraints comprise new data from the Submillimeter Array on HCO+, acquired at unprecedented spatial resolution, and data from the literature, including ALMA observations of N2H+. We vary the model incident CR flux and stellar X-ray spectra and find that TW Hya's HCO+ and N2H+ emission are best fit by a moderately hard X-ray spectra, as would be expected during the "flaring" state of the star, and a low CR ionization rate, ζCR≲10−19 s−1. This low CR rate is the first indication of the presence of CR exclusion by winds and/or magnetic fields in an actively accreting T Tauri disk system. With this new constraint, our best fit ionization structure predicts a low turbulence "dead-zone" extending from the inner edge of the disk out to 50−65 AU. This region coincides with an observed concentration of millimeter grains, and we propose that the inner region of TW Hya is a dust (and possibly planet) growth factory as predicted by previous theoretical work.Publication The comet-like composition of a protoplanetary disk as revealed by complex cyanides(Nature Publishing Group, 2015) Oberg, Karin; Guzmán, Viviana V.; Furuya, Kenji; Qi, Chunhua; Aikawa, Yuri; Andrews, Sean; Loomis, Ryan; Wilner, DavidObservations of comets and asteroids show that the Solar Nebula that spawned our planetary system was rich in water and organic molecules. Bombardment brought these organics to the young Earth's surface, seeding its early chemistry. Unlike asteroids, comets preserve a nearly pristine record of the Solar Nebula composition. The presence of cyanides in comets, including 0.01% of methyl cyanide (CH3CN) with respect to water, is of special interest because of the importance of C-N bonds for abiotic amino acid synthesis. Comet-like compositions of simple and complex volatiles are found in protostars, and can be readily explained by a combination of gas-phase chemistry to form e.g. HCN and an active ice-phase chemistry on grain surfaces that advances complexity[3]. Simple volatiles, including water and HCN, have been detected previously in Solar Nebula analogues - protoplanetary disks around young stars - indicating that they survive disk formation or are reformed in situ. It has been hitherto unclear whether the same holds for more complex organic molecules outside of the Solar Nebula, since recent observations show a dramatic change in the chemistry at the boundary between nascent envelopes and young disks due to accretion shocks[8]. Here we report the detection of CH3CN (and HCN and HC3N) in the protoplanetary disk around the young star MWC 480. We find abundance ratios of these N-bearing organics in the gas-phase similar to comets, which suggests an even higher relative abundance of complex cyanides in the disk ice. This implies that complex organics accompany simpler volatiles in protoplanetary disks, and that the rich organic chemistry of the Solar Nebula was not unique.Publication A Ring of C2H in the Molecular Disk Orbiting TW Hya(IOP Publishing, 2015) Kastner, Joel H.; Qi, Chunhua; Gorti, Uma; Hily-Blant, Pierre; Oberg, Karin; Forveille, Thierry; Andrews, Sean; Wilner, DavidWe have used the Submillimeter Array to image, at ~1farcs5 resolution, C2H $N=3\to 2$ emission from the circumstellar disk orbiting the nearby (D = 54 pc), ~8 Myr-old, ~0.8 ${{M}_{\odot }}$ classical T Tauri star TW Hya. The SMA imaging reveals that the C2H emission exhibits a ring-like morphology. Based on a model in which the C2H column density follows a truncated radial power-law distribution, we find that the inner edge of the ring lies at ~45 AU, and that the ring extends to at least ~120 AU. Comparison with previous (single-dish) observations of C2H $N=4\to 3$ emission indicates that the C2H molecules are subthermally excited and, hence, that the emission arises from the relatively warm ($T\gtrsim 40$ K), tenuous ($n\ll {{10}^{7}}$ cm−3) upper atmosphere of the disk. Based on these results and comparisons of the SMA C2H map with previous submillimeter and scattered-light imaging, we propose that the C2H emission most likely traces particularly efficient photo-destruction of small grains and/or photodesorption and photodissociation of hydrocarbons derived from grain ice mantles in the surface layers of the outer disk. The presence of a C2H ring in the TW Hya disk hence likely serves as a marker of dust grain processing and radial and vertical grain size segregation within the disk.Publication HNC in Protoplanetary Disks(IOP Publishing, 2015) Graninger, Dawn; Oberg, Karin; Qi, Chunhua; Kastner, JoelThe distributions and abundances of small organics in protoplanetary disks are potentially powerful probes of disk physics and chemistry. HNC is a common probe of dense interstellar regions and the target of this study. We use the Submillimeter Array (SMA) to observe HNC 3–2 toward the protoplanetary disks around the T Tauri star TW Hya and the Herbig Ae star HD 163296. HNC is detected toward both disks, constituting the first spatially resolved observations of HNC in disks. We also present SMA observations of HCN 3–2 and IRAM 30 m observations of HCN and HNC 1–0 toward HD 163296. The disk-averaged HNC/HCN emission ratio is 0.1–0.2 toward both disks. Toward TW Hya, the HNC emission is confined to a ring. The varying HNC abundance in the TW Hya disk demonstrates that HNC chemistry is strongly linked to the disk physical structure. In particular, the inner rim of the HNC ring can be explained by efficient destruction of HNC at elevated temperatures, similar to what is observed in the ISM. However, to realize the full potential of HNC as a disk tracer requires a combination of high SNR spatially resolved observations of HNC and HCN and disk-specific HNC chemical modeling.Publication Double DCO+ rings reveal CO ice desorption in the outer disk around IM Lup(IOP Publishing, 2015) Oberg, Karin; Furuya, Kenji; Loomis, Ryan; Aikawa, Yuri; Andrews, Sean; Qi, Chunhua; Dishoeck, Ewine F. van; Wilner, DavidIn a protoplanetary disk, a combination of thermal and non-thermal desorption processes regulate where volatiles are liberated from icy grain mantles into the gas phase. Non-thermal desorption should result in volatile-enriched gas in disk-regions where complete freeze-out is otherwise expected. We present Atacama Large Millimeter/Submillimeter Array observations of the disk around the young star IM Lup in 1.4 mm continuum, C18O 2–1, H13CO+ 3–2 and DCO+ 3–2 emission at ~0farcs5 resolution. The images of these dust and gas tracers are clearly resolved. The DCO+ line exhibits a striking pair of concentric rings of emission that peak at radii of ~0farcs6 and 2'' (~90 and 300 AU, respectively). Based on disk chemistry model comparison, the inner DCO+ ring is associated with the balance of CO freeze-out and thermal desorption due to a radial decrease in disk temperature. The outer DCO+ ring is explained by non-thermal desorption of CO ice in the low-column-density outer disk, repopulating the disk midplane with cold CO gas. The CO gas then reacts with abundant H2D+ to form the observed DCO+ outer ring. These observations demonstrate that spatially resolved DCO+ emission can be used to trace otherwise hidden cold gas reservoirs in the outmost disk regions, opening a new window onto their chemistry and kinematics.Publication Chemical Imaging of the CO Snow Line in the HD 163296 Disk(IOP Publishing, 2015) Qi, Chunhua; Oberg, Karin; Andrews, Sean; Wilner, David; Bergin, Edwin A.; Hughes, Amy; Hogherheijde, Michiel; D’Alessio, PaolaThe condensation fronts (snow lines) of H2O, CO, and other abundant volatiles in the midplane of a protoplanetary disk affect several aspects of planet formation. Locating the CO snow line, where the CO gas column density is expected to drop substantially, based solely on CO emission profiles, is challenging. This has prompted an exploration of chemical signatures of CO freeze-out. We present ALMA Cycle 1 observations of the N2H+ J = 3−2 and DCO+ J = 4−3 emission lines toward the disk around the Herbig Ae star HD 163296 at ~0farcs5 (60 AU) resolution, and evaluate their utility as tracers of the CO snow line location. The N2H+ emission is distributed in a ring with an inner radius at 90 AU, corresponding to a midplane temperature of 25 K. This result is consistent with a new analysis of optically thin C18O data, which implies a sharp drop in CO abundance at 90 AU. Thus N2H+ appears to be a robust tracer of the midplane CO snow line. The DCO+ emission also has a ring morphology, but neither the inner nor the outer radius coincide with the CO snow line location of 90 AU, indicative of a complex relationship between DCO+ emission and CO freeze-out in the disk midplane. Compared to TW Hya, CO freezes out at a higher temperature in the disk around HD 163296 (25 versus 17 K in the TW Hya disk), perhaps due to different ice compositions. This highlights the importance of actually measuring the CO snow line location, rather than assuming a constant CO freeze-out temperature for all disks.