Person: Manning, Brendan
Email Address
AA Acceptance Date
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
First Name
Name
Search Results
Publication Therapeutic Trial of Metformin and Bortezomib in a Mouse Model of Tuberous Sclerosis Complex (TSC)
(Public Library of Science, 2012) Auricchio, Neil; Malinowska, Izabela A.; Shaw, Reuben; Manning, Brendan; Kwiatkowski, DavidTuberous sclerosis complex (TSC) is a human genetic disorder in which loss of either TSC1 or TSC2 leads to development of hamartoma lesions, which can progress and be life-threatening or fatal. The TSC1/TSC2 protein complex regulates the state of activation of mTORC1. (Tsc2^{+/−}) mice develop renal cystadenoma lesions which grow progressively. Both bortezomib and metformin have been proposed as potential therapeutics in TSC. We examined the potential benefit of 1 month treatment with bortezomib, and 4 month treatment with metformin in (Tsc2^{+/−}) mice. Results were compared to vehicle treatment and treatment with the mTORC1 inhibitor rapamycin for 1 month. We used a quantitative tumor volume measurement on stained paraffin sections to assess the effect of these drugs. The median tumor volume per kidney was decreased by 99% in mice treated with rapamycin (p = 0.0004). In contrast, the median tumor volume per kidney was not significantly reduced for either the bortezomib cohort or the metformin cohort. Biochemical studies confirmed that bortezomib and metformin had their expected pharmacodynamic effects. We conclude that neither bortezomib nor metformin has significant benefit in this native (Tsc2^{+/−}) mouse model, which suggests limited benefit of these compounds in the treatment of TSC hamartomas and related lesions.
Publication The TSC-mTOR pathway regulates macrophage polarization
(2013) Byles, Vanessa; Covarrubias, Anthony Joseph; Ben-Sahra, Issam; Lamming, Dudley W.; Sabatini, David M.; Manning, Brendan; Horng, TiffanyMacrophages are able to polarize to proinflammatory M1 or alternative M2 states with distinct phenotypes and physiological functions. How metabolic status regulates macrophage polarization remains not well understood, and here we examine the role of mTOR (Mechanistic Target of Rapamycin), a central metabolic pathway that couples nutrient sensing to regulation of metabolic processes. Using a mouse model in which myeloid lineage specific deletion of Tsc1 (Tsc1Δ/Δ) leads to constitutive mTOR Complex 1 (mTORC1) activation, we find that Tsc1Δ/Δ macrophages are refractory to IL-4 induced M2 polarization, but produce increased inflammatory responses to proinflammatory stimuli. Moreover, mTORC1-mediated downregulation of Akt signaling critically contributes to defective polarization. These findings highlight a key role for the mTOR pathway in regulating macrophage polarization, and suggest how nutrient sensing and metabolic status could be “hard-wired” to control of macrophage function, with broad implications for regulation of Type 2 immunity, inflammation, and allergy.
Publication Sin1 phosphorylation impairs mTORC2 complex integrity and inhibits downstream Akt signaling to suppress tumorigenesis
(2013) Liu, Pengda; Gan, Wenjian; Inuzuka, Hiroyuki; Lazorchak, Adam S; Gao, Daming; Arojo, Omotooke; Liu, Dou; Wan, Lixin; Zhai, Bo; Yu, Yonghao; Yuan, Min; Kim, Byeong Mo; Shaik, Shavali; Menon, Suchithra; Gygi, Steven; Lee, Tae Ho; Asara, John; Manning, Brendan; Blenis, John; Su, Bing; Wei, WenyiThe mechanistic target of rapamycin (mTOR) functions as a critical regulator of cellular growth and metabolism by forming multi-component, yet functionally distinct complexes mTORC1 and mTORC2. Although mTORC2 has been implicated in mTORC1 activation, little is known about how mTORC2 is regulated. Here we report that phosphorylation of Sin1 at T86 and T398 suppresses mTORC2 kinase activity by dissociating Sin1 from mTORC2. Importantly, Sin1 phosphorylation, triggered by S6K or Akt, in a cellular context-dependent manner, inhibits not only insulin/IGF-1-mediated, but also PDGF or EGF-induced Akt phosphorylation by mTORC2, demonstrating a negative regulation of mTORC2 independent of IRS-1 and Grb10. Lastly, a cancer patient-derived Sin1-R81T mutation impairs Sin1 phosphorylation, leading to hyper-mTORC2 activation via bypassing this negative regulation. Together, our work reveals a Sin1 phosphorylation-dependent mTORC2 regulation, providing a potential molecular mechanism by which mutations in the mTORC1/S6K/Sin1 signaling axis might cause aberrant hyper-activation of mTORC2/Akt that facilitates tumorigenesis.
Publication mTORC1 stimulates nucleotide synthesis through both transcriptional and post-translational mechanisms
(BioMed Central, 2014) Ben-Sahra, Issam; Ricoult, Stephane; Howell, Jessica; Asara, John; Manning, BrendanPublication Oncogenic signaling upstream of mTORC1 drives lipogenesis and proliferation through SREBP
(BioMed Central, 2014) Ricoult, Stéphane; Yecies, Jessica; Manning, BrendanPublication Mechanisms and consequences of hepatic regulation of mTORC1 by metformin
(BioMed Central, 2014) Howell, Jessica; Hellberg, Kristina; Shaw, Reuben J; Manning, BrendanPublication NF2/Merlin Is a Novel Negative Regulator of mTOR Complex 1, and Activation of mTORC1 Is Associated with Meningioma and Schwannoma Growth
(American Society for Microbiology, 2009) James, Marianne F.; Han, Simeng; Polizzano, Carolyn; Plotkin, Scott; Manning, Brendan; Stemmer-Rachamimov, Anat; Gusella, James; Ramesh, VijayaInactivating mutations of the neurofibromatosis 2 (NF2) gene, NF2, result predominantly in benign neurological tumors, schwannomas and meningiomas, in humans; however, mutations in murine Nf2 lead to a broad spectrum of cancerous tumors. The tumor-suppressive function of the NF2 protein, merlin, a membrane-cytoskeleton linker, remains unclear. Here, we identify the mammalian target of rapamycin complex 1 (mTORC1) as a novel mediator of merlin's tumor suppressor activity. Merlin-deficient human meningioma cells and merlin knockdown arachnoidal cells, the nonneoplastic cell counterparts of meningiomas, exhibit rapamycin-sensitive constitutive mTORC1 activation and increased growth. NF2 patient tumors and Nf2-deficient mouse embryonic fibroblasts demonstrate elevated mTORC1 signaling. Conversely, the exogenous expression of wild-type merlin isoforms, but not a patient-derived L64P mutant, suppresses mTORC1 signaling. Merlin does not regulate mTORC1 via the established mechanism of phosphoinositide 3-kinase-Akt or mitogen-activated protein kinase/extracellular signal-regulated kinase-mediated TSC2 inactivation and may instead regulate TSC/mTOR signaling in a novel fashion. In conclusion, the deregulation of mTORC1 activation underlies the aberrant growth and proliferation of NF2-associated tumors and may restrain the growth of these lesions through negative feedback mechanisms, suggesting that rapamycin in combination with phosphoinositide 3-kinase inhibitors may be therapeutic for NF2.
Publication Improved detection of synthetic lethal interactions in Drosophila cells using variable dose analysis (VDA)
(National Academy of Sciences, 2017) Housden, Benjamin E.; Li, Zhongchi; Kelley, Colleen; Wang, Yuanli; Hu, Yanhui; Valvezan, Alexander; Manning, Brendan; Perrimon, NorbertSynthetic sick or synthetic lethal (SS/L) screens are a powerful way to identify candidate drug targets to specifically kill tumor cells, but this approach generally suffers from low consistency between screens. We found that many SS/L interactions involve essential genes and are therefore detectable within a limited range of knockdown efficiency. Such interactions are often missed by overly efficient RNAi reagents. We therefore developed an assay that measures viability over a range of knockdown efficiency within a cell population. This method, called Variable Dose Analysis (VDA), is highly sensitive to viability phenotypes and reproducibly detects SS/L interactions. We applied the VDA method to search for SS/L interactions with TSC1 and TSC2, the two tumor suppressors underlying tuberous sclerosis complex (TSC), and generated a SS/L network for TSC. Using this network, we identified four Food and Drug Administration-approved drugs that selectively affect viability of TSC-deficient cells, representing promising candidates for repurposing to treat TSC-related tumors.
Publication mTORC1 suppresses PIM3 expression via miR-33 encoded by the SREBP loci
(Nature Publishing Group UK, 2017) Kelsey, Ilana; Zbinden, Marie; Byles, Vanessa; Torrence, Meghan; Manning, BrendanThe mechanistic target of rapamycin complex 1 (mTORC1) is a central regulator of cell growth that is often aberrantly activated in cancer. However, mTORC1 inhibitors, such as rapamycin, have limited effectiveness as single agent cancer therapies, with feedback mechanisms inherent to the signaling network thought to diminish the anti-tumor effects of mTORC1 inhibition. Here, we identify the protein kinase and proto-oncogene PIM3 as being repressed downstream of mTORC1 signaling. PIM3 expression is suppressed in cells with loss of the tuberous sclerosis complex (TSC) tumor suppressors, which exhibit growth factor-independent activation of mTORC1, and in the mouse liver upon feeding-induced activation of mTORC1. Inhibition of mTORC1 with rapamycin induces PIM3 transcript and protein levels in a variety of settings. Suppression of PIM3 involves the sterol regulatory element-binding (SREBP) transcription factors SREBP1 and 2, whose activation and mRNA expression are stimulated by mTORC1 signaling. We find that PIM3 repression is mediated by miR-33, an intronic microRNA encoded within the SREBP loci, the expression of which is decreased with rapamycin. These results demonstrate that PIM3 is induced upon mTORC1 inhibition, with potential implications for the effects of mTORC1 inhibitors in TSC, cancers, and the many other disease settings influenced by aberrant mTORC1 signaling.
Publication Coordinated regulation of protein synthesis and degradation by mTORC1
(Springer Science and Business Media LLC, 2014-07-13) Zhang, Yinan; Nicholatos, Justin William; Dreier, John; Ricoult, Stephane Jean Hermann; Widenmaier, Scott; Hotamisligil, Gokhan; Kwiatkowski, David; Manning, BrendanEukaryotic cells coordinately control anabolic and catabolic processes to maintain cell and tissue homeostasis. Mechanistic target of rapamycin complex 1 (mTORC1) promotes nutrient-consuming anabolic processes, such as protein synthesis1. Here we show that as well as increasing protein synthesis, mTORC1 activation in mouse and human cells also promotes an increased capacity for protein degradation. Cells with activated mTORC1 exhibited elevated levels of intact and active proteasomes through a global increase in the expression of genes encoding proteasome subunits. The increase in proteasome gene expression, cellular proteasome content, and rates of protein turnover downstream of mTORC1 were all dependent on induction of the transcription factor nuclear factor erythroid-derived 2-related factor 1 (NRF1; also known as NFE2L1). Genetic activation of mTORC1 through loss of the tuberous sclerosis complex tumour suppressors, TSC1 or TSC2, or physiological activation of mTORC1 in response to growth factors or feeding resulted in increased NRF1 expression in cells and tissues. We find that this NRF1-dependent elevation in proteasome levels serves to increase the intracellular pool of amino acids, which thereby influences rates of new protein synthesis. Therefore, mTORC1 signalling increases the efficiency of proteasome-mediated protein degradation for both quality control and as a mechanism to supply substrate for sustained protein synthesis.