Person: Servais, Andrew
Loading...
Email Address
AA Acceptance Date
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Servais
First Name
Andrew
Name
Servais, Andrew
3 results
Search Results
Now showing 1 - 3 of 3
Publication Free-Floating Mesothelial Cells in Pleural Fluid After Lung Surgery(Frontiers Media S.A., 2018) Kienzle, Arne; Servais, Andrew; Ysasi, Alexandra B.; Gibney, Barry C.; Valenzuela, Cristian D.; Wagner, Willi L.; Ackermann, Maximilian; Mentzer, StevenObjectives: The mesothelium, the surface layer of the heart, lung, bowel, liver, and tunica vaginalis, is a complex tissue implicated in organ-specific diseases and regenerative biology; however, the mechanism of mesothelial repair after surgical injury is unknown. Previous observations indicated seeding of denuded mesothelium by free-floating mesothelial cells may contribute to mesothelial healing. In this study, we investigated the prevalence of mesothelial cells in pleural fluid during the 7 days following pulmonary surgery. Study design Flow cytometry was employed to study pleural fluid of 45 patients after lung resection or transplantation. We used histologically validated mesothelial markers (CD71 and WT1) to estimate the prevalence of mesothelial cells. Results: The viability of pleural fluid cells approached 100%. Leukocytes and mesothelial cells were identified in the pleural fluid within the first week after surgery. The leukocyte concentration was relatively stable at all time points. In contrast, mesothelial cells, identified by CD71 and WT1 peaked on POD3. The broad expression of CD71 molecule in postoperative pleural fluid suggests that many of the free-floating non-leukocyte cells were activated or proliferative mesothelial cells. Conclusion: We demonstrated that pleural fluid post lung surgery is a source of mesothelial cells; most of these cells appear to be viable and, as shown by CD71 staining, activated mesothelial cells. The observed peak of mesothelial cells on POD3 is consistent with a potential reparative role of free-floating mesothelial cells after pulmonary surgery.Publication Pressure‐decay testing of pleural air leaks in intact murine lungs: evidence for peripheral airway regulation(John Wiley and Sons Inc., 2018) Servais, Andrew; Valenzuela, Cristian D.; Ysasi, Alexandra B.; Wagner, Willi L.; Kienzle, Arne; Loring, Stephen; Tsuda, Akira; Ackermann, Maximilian; Mentzer, StevenAbstract The critical care management of pleural air leaks can be challenging in all patients, but particularly in patients on mechanical ventilation. To investigate the effect of central airway pressure and pleural pressure on pulmonary air leaks, we studied orotracheally intubated mice with pleural injuries. We used clinically relevant variables – namely, airway pressure and pleural pressure – to investigate flow through peripheral air leaks. The model studied the pleural injuries using a pressure‐decay maneuver. The pressure‐decay maneuver involved a 3 sec ramp to 30 cmH20 followed by a 3 sec breath hold. After pleural injury, the pressure‐decay maneuver demonstrated a distinctive airway pressure time history. Peak inflation was followed by a rapid decrease to a lower plateau phase. The decay phase of the inflation maneuver was influenced by the injury area. The rate of pressure decline with multiple injuries (28 ± 8 cmH20/sec) was significantly greater than a single injury (12 ± 3 cmH2O/sec) (P < 0.05). In contrast, the plateau phase pressure was independent of injury surface area, but dependent upon transpulmonary pressure. The mean plateau transpulmonary pressure was 18 ± 0.7 cm H2O. Finally, analysis of the inflation ramp demonstrated that nearly all volume loss occurred at the end of inflation (P < 0.001). We conclude that the air flow through peripheral lung injuries was greatest at increased lung volumes and limited by peripheral airway closure. In addition to suggesting an intrinsic mechanism for limiting flow through peripheral air leaks, these findings suggest the utility of positive end‐expiratory pressure and negative pleural pressure to maintain lung volumes in patients with pleural injuries.Publication Evidence for pleural epithelial-mesenchymal transition in murine compensatory lung growth(Public Library of Science, 2017) Ysasi, Alexandra B.; Wagner, Willi L.; Valenzuela, Cristian D.; Kienzle, Arne; Servais, Andrew; Bennett, Robert D.; Tsuda, Akira; Ackermann, Maximilian; Mentzer, StevenIn many mammals, including rodents and humans, removal of one lung results in the compensatory growth of the remaining lung; however, the mechanism of compensatory lung growth is unknown. Here, we investigated the changes in morphology and phenotype of pleural cells after pneumonectomy. Between days 1 and 3 after pneumonectomy, cells expressing α-smooth muscle actin (SMA), a cytoplasmic marker of myofibroblasts, were significantly increased in the pleura compared to surgical controls (p < .01). Scanning electron microscopy of the pleural surface 3 days post-pneumonectomy demonstrated regions of the pleura with morphologic features consistent with epithelial-mesenchymal transition (EMT); namely, cells with disrupted intercellular junctions and an acquired mesenchymal (rounded and fusiform) morphotype. To detect the migration of the transitional pleural cells into the lung, a biotin tracer was used to label the pleural mesothelial cells at the time of surgery. By post-operative day 3, image cytometry of post-pneumonectomy subpleural alveoli demonstrated a 40-fold increase in biotin+ cells relative to pneumonectomy-plus-plombage controls (p < .01). Suggesting a similar origin in space and time, the distribution of cells expressing biotin, SMA, or vimentin demonstrated a strong spatial autocorrelation in the subpleural lung (p < .001). We conclude that post-pneumonectomy compensatory lung growth involves EMT with the migration of transitional mesothelial cells into subpleural alveoli.