Person: Drummond, Iain
Loading...
Email Address
AA Acceptance Date
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Drummond
First Name
Iain
Name
Drummond, Iain
8 results
Search Results
Now showing 1 - 8 of 8
Publication Collective Epithelial Migration Drives Kidney Repair after Acute Injury(Public Library of Science, 2014) Palmyre, Aurélien; Lee, Jeongeun; Ryklin, Gennadiy; Camarata, Troy; Selig, Martin K.; Duchemin, Anne-Laure; Nowak, Paul; Arnaout, M.; Drummond, Iain; Vasilyev, AleksandrAcute kidney injury (AKI) is a common and significant medical problem. Despite the kidney’s remarkable regenerative capacity, the mortality rate for the AKI patients is high. Thus, there remains a need to better understand the cellular mechanisms of nephron repair in order to develop new strategies that would enhance the intrinsic ability of kidney tissue to regenerate. Here, using a novel, laser ablation-based, zebrafish model of AKI, we show that collective migration of kidney epithelial cells is a primary early response to acute injury. We also show that cell proliferation is a late response of regenerating kidney epithelia that follows cell migration during kidney repair. We propose a computational model that predicts this temporal relationship and suggests that cell stretch is a mechanical link between migration and proliferation, and present experimental evidence in support of this hypothesis. Overall, this study advances our understanding of kidney repair mechanisms by highlighting a primary role for collective cell migration, laying a foundation for new approaches to treatment of AKI.Publication Mutations in TRAF3IP1/IFT54 reveal a new role for IFT proteins in microtubule stabilization(Nature Pub. Group, 2015) Bizet, Albane A.; Becker-Heck, Anita; Ryan, Rebecca; Weber, Kristina; Filhol, Emilie; Krug, Pauline; Halbritter, Jan; Delous, Marion; Lasbennes, Marie-Christine; Linghu, Bolan; Oakeley, Edward J.; Zarhrate, Mohammed; Nitschké, Patrick; Garfa-Traore, Meriem; Serluca, Fabrizio; Yang, Fan; Bouwmeester, Tewis; Pinson, Lucile; Cassuto, Elisabeth; Dubot, Philippe; Elshakhs, Neveen A. Soliman; Sahel, José A.; Salomon, Rémi; Drummond, Iain; Gubler, Marie-Claire; Antignac, Corinne; Chibout, Salahdine; Szustakowski, Joseph D.; Hildebrandt, Friedhelm; Lorentzen, Esben; Sailer, Andreas W.; Benmerah, Alexandre; Saint-Mezard, Pierre; Saunier, SophieCiliopathies are a large group of clinically and genetically heterogeneous disorders caused by defects in primary cilia. Here we identified mutations in TRAF3IP1 (TNF Receptor-Associated Factor Interacting Protein 1) in eight patients from five families with nephronophthisis (NPH) and retinal degeneration, two of the most common manifestations of ciliopathies. TRAF3IP1 encodes IFT54, a subunit of the IFT-B complex required for ciliogenesis. The identified mutations result in mild ciliary defects in patients but also reveal an unexpected role of IFT54 as a negative regulator of microtubule stability via MAP4 (microtubule-associated protein 4). Microtubule defects are associated with altered epithelialization/polarity in renal cells and with pronephric cysts and microphthalmia in zebrafish embryos. Our findings highlight the regulation of cytoplasmic microtubule dynamics as a role of the IFT54 protein beyond the cilium, contributing to the development of NPH-related ciliopathies.Publication Nephronophthisis-Associated CEP164 Regulates Cell Cycle Progression, Apoptosis and Epithelial-to-Mesenchymal Transition(Public Library of Science, 2014) Slaats, Gisela G.; Ghosh, Amiya K.; Falke, Lucas L.; Le Corre, Stéphanie; Shaltiel, Indra A.; van de Hoek, Glenn; Klasson, Timothy D.; Stokman, Marijn F.; Logister, Ive; Verhaar, Marianne C.; Goldschmeding, Roel; Nguyen, Tri Q.; Drummond, Iain; Hildebrandt, Friedhelm; Giles, Rachel H.We recently reported that centrosomal protein 164 (CEP164) regulates both cilia and the DNA damage response in the autosomal recessive polycystic kidney disease nephronophthisis. Here we examine the functional role of CEP164 in nephronophthisis-related ciliopathies and concomitant fibrosis. Live cell imaging of RPE-FUCCI (fluorescent, ubiquitination-based cell cycle indicator) cells after siRNA knockdown of CEP164 revealed an overall quicker cell cycle than control cells, although early S-phase was significantly longer. Follow-up FACS experiments with renal IMCD3 cells confirm that Cep164 siRNA knockdown promotes cells to accumulate in S-phase. We demonstrate that this effect can be rescued by human wild-type CEP164, but not disease-associated mutants. siRNA of CEP164 revealed a proliferation defect over time, as measured by CyQuant assays. The discrepancy between accelerated cell cycle and inhibited overall proliferation could be explained by induction of apoptosis and epithelial-to-mesenchymal transition. Reduction of CEP164 levels induces apoptosis in immunofluorescence, FACS and RT-QPCR experiments. Furthermore, knockdown of Cep164 or overexpression of dominant negative mutant allele CEP164 Q525X induces epithelial-to-mesenchymal transition, and concomitant upregulation of genes associated with fibrosis. Zebrafish injected with cep164 morpholinos likewise manifest developmental abnormalities, impaired DNA damage signaling, apoptosis and a pro-fibrotic response in vivo. This study reveals a novel role for CEP164 in the pathogenesis of nephronophthisis, in which mutations cause ciliary defects coupled with DNA damage induced replicative stress, cell death, and epithelial-to-mesenchymal transition, and suggests that these events drive the characteristic fibrosis observed in nephronophthisis kidneys.Publication Mutation of Growth Arrest Specific 8 Reveals a Role in Motile Cilia Function and Human Disease(Public Library of Science, 2016) Lewis, Wesley R.; Malarkey, Erik B.; Tritschler, Douglas; Bower, Raqual; Pasek, Raymond C.; Porath, Jonathan D.; Birket, Susan E.; Saunier, Sophie; Antignac, Corinne; Knowles, Michael R.; Leigh, Margaret W.; Zariwala, Maimoona A.; Challa, Anil K.; Kesterson, Robert A.; Rowe, Steven M.; Drummond, Iain; Parant, John M.; Hildebrandt, Friedhelm; Porter, Mary E.; Yoder, Bradley K.; Berbari, Nicolas F.Ciliopathies are genetic disorders arising from dysfunction of microtubule-based cellular appendages called cilia. Different cilia types possess distinct stereotypic microtubule doublet arrangements with non-motile or ‘primary’ cilia having a 9+0 and motile cilia have a 9+2 array of microtubule doublets. Primary cilia are critical sensory and signaling centers needed for normal mammalian development. Defects in their structure/function result in a spectrum of clinical and developmental pathologies including abnormal neural tube and limb patterning. Altered patterning phenotypes in the limb and neural tube are due to perturbations in the hedgehog (Hh) signaling pathway. Motile cilia are important in fluid movement and defects in motility result in chronic respiratory infections, altered left-right asymmetry, and infertility. These features are the hallmarks of Primary Ciliary Dyskinesia (PCD, OMIM 244400). While mutations in several genes are associated with PCD in patients and animal models, the genetic lesion in many cases is unknown. We assessed the in vivo functions of Growth Arrest Specific 8 (GAS8). GAS8 shares strong sequence similarity with the Chlamydomonas Nexin-Dynein Regulatory Complex (NDRC) protein 4 (DRC4) where it is needed for proper flagella motility. In mammalian cells, the GAS8 protein localizes not only to the microtubule axoneme of motile cilia, but also to the base of non-motile cilia. Gas8 was recently implicated in the Hh signaling pathway as a regulator of Smoothened trafficking into the cilium. Here, we generate the first mouse with a Gas8 mutation and show that it causes severe PCD phenotypes; however, there were no overt Hh pathway phenotypes. In addition, we identified two human patients with missense variants in Gas8. Rescue experiments in Chlamydomonas revealed a subtle defect in swim velocity compared to controls. Further experiments using CRISPR/Cas9 homology driven repair (HDR) to generate one of these human missense variants in mice demonstrated that this allele is likely pathogenic.Publication Prostaglandin signaling regulates ciliogenesis by modulating intraflagellar transport(2014) Jin, Daqing; Ni, Terri T.; Sun, Jianjian; Wan, Haiyan; Amack, Jeffrey D.; Yu, Guangju; Fleming, Jonathan; Chiang, Chin; Li, Wenyan; Papierniak, Anna; Cheepala, Satish; Conseil, Gwenaëlle; Cole, Susan P.C.; Zhou, Bin; Drummond, Iain; Schuetz, John D.; Malicki, Jarema; Zhong, Tao P.Cilia are microtubule-based organelles that mediate signal transduction in a variety of tissues. Despite their importance, the signaling cascades that regulate cilia formation remain incompletely understood. Here we report that prostaglandin signaling affects ciliogenesis by regulating anterograde intraflagellar transport (IFT). Zebrafish leakytail (lkt) mutants display ciliogenesis defects, and lkt locus encodes an ATP-binding cassette transporter (ABCC4). We show that Lkt/ABCC4 localizes to the cell membrane and exports prostaglandin E2 (PGE2), a function that is abrogated by the Lkt/ABCC4T804M mutant. PGE2 synthesis enzyme Cyclooxygenase-1 and its receptor, EP4, which localizes to the cilium and activates cAMP-mediated signaling cascade, are required for cilia formation and elongation. Importantly, PGE2 signaling increases anterograde but not retrograde velocity of IFT and promotes ciliogenesis in mammalian cells. These findings lead us to propose that Lkt/ABCC4-mediated PGE2 signaling acts through a ciliary G-protein-coupled receptor, EP4, to upregulate cAMP synthesis and increase anterograde IFT, thereby promoting ciliogenesis.Publication Mechanical Stretch and PI3K Signaling Link Cell Migration and Proliferation to Coordinate Epithelial Tubule Morphogenesis in the Zebrafish Pronephros(Public Library of Science, 2012) Vasilyev, Aleksandr; Liu, Yan; Hellman, Nathan; Pathak, Narendra H.; Drummond, IainOrgan development leads to the emergence of organ function, which in turn can impact developmental processes. Here we show that fluid flow-induced collective epithelial migration during kidney nephron morphogenesis induces cell stretch that in turn signals epithelial proliferation. Increased cell proliferation was dependent on PI3K signaling. Inhibiting epithelial proliferation by blocking PI3K or CDK4/Cyclin D1 activity arrested cell migration prematurely and caused a marked overstretching of the distal nephron tubule. Computational modeling of the involved cell processes predicted major morphological and kinetic outcomes observed experimentally under a variety of conditions. Overall, our findings suggest that kidney development is a recursive process where emerging organ function “feeds back” to the developmental program to influence fundamental cellular events such as cell migration and proliferation, thus defining final organ morphology.Publication Assaying sensory ciliopathies using calcium biosensor expression in zebrafish ciliated olfactory neurons(BioMed Central, 2018) Bergboer, Judith G. M.; Wyatt, Cameron; Austin-Tse, Christina; Yaksi, Emre; Drummond, IainBackground: Primary cilia mediate signal transduction by acting as an organizing scaffold for receptors, signalling proteins and ion channels. Ciliated olfactory sensory neurons (OSNs) organize olfactory receptors and ion channels on cilia and generate a calcium influx as a primary signal in odourant detection. In the zebrafish olfactory placode, ciliated OSNs and microvillus OSNs constitute the major OSN cell types with distinct odourant sensitivity. Methods: Using transgenic expression of the calcium biosensor GCaMP5 in OSNs, we analysed sensory cilia-dependent odour responses in live zebrafish, at individual cell resolution. oval/ift88 mutant and ift172 knockdown zebrafish were compared with wild-type siblings to establish ciliated OSN sensitivity to different classes of odourants. Results: oval/ift88 mutant and ift172 knockdown zebrafish showed fewer and severely shortened OSN cilia without a reduction in OSN number. The fraction of responding OSNs and response amplitudes to bile acids and food odour, both sensed by ciliated OSNs, were significantly reduced in ift88 mutants and ift172-deficient embryos, while the amino acids responses were not significantly changed. Conclusions: Our approach presents a quantitative model for studying sensory cilia signalling using zebrafish OSNs. Our results also implicate ift172-deficiency as a novel cause of hyposmia, a reduced sense of smell, highlighting the value of directly assaying sensory cilia signalling in vivo and supporting the idea that hyposmia can be used as a diagnostic indicator of ciliopathies. Electronic supplementary material The online version of this article (10.1186/s13630-018-0056-1) contains supplementary material, which is available to authorized users.Publication Dissecting hematopoietic and renal cell heterogeneity in adult zebrafish at single-cell resolution using RNA sequencing(The Rockefeller University Press, 2017) Tang, Qin; Iyer, Sowmya; Lobbardi, Riadh; Moore, John C.; Chen, Huidong; Lareau, Caleb; Hebert, Christine; Shaw, McKenzie L.; Neftel, Cyril; Suva, Mario; Ceol, Craig J.; Bernards, Andre; Aryee, Martin; Pinello, Luca; Drummond, Iain; Langenau, DavidRecent advances in single-cell, transcriptomic profiling have provided unprecedented access to investigate cell heterogeneity during tissue and organ development. In this study, we used massively parallel, single-cell RNA sequencing to define cell heterogeneity within the zebrafish kidney marrow, constructing a comprehensive molecular atlas of definitive hematopoiesis and functionally distinct renal cells found in adult zebrafish. Because our method analyzed blood and kidney cells in an unbiased manner, our approach was useful in characterizing immune-cell deficiencies within DNA–protein kinase catalytic subunit (prkdc), interleukin-2 receptor γ a (il2rga), and double-homozygous–mutant fish, identifying blood cell losses in T, B, and natural killer cells within specific genetic mutants. Our analysis also uncovered novel cell types, including two classes of natural killer immune cells, classically defined and erythroid-primed hematopoietic stem and progenitor cells, mucin-secreting kidney cells, and kidney stem/progenitor cells. In total, our work provides the first, comprehensive, single-cell, transcriptomic analysis of kidney and marrow cells in the adult zebrafish.