Person:
Breakefield, Xandra

Loading...
Profile Picture

Email Address

AA Acceptance Date

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Breakefield

First Name

Xandra

Name

Breakefield, Xandra

Search Results

Now showing 1 - 10 of 27
  • Thumbnail Image
    Publication
    Engineered nanointerfaces for microfluidic isolation and molecular profiling of tumor-specific extracellular vesicles
    (Nature Publishing Group UK, 2018) Reátegui, Eduardo; van der Vos, Kristan E.; Lai, Charles P.; Zeinali, Mahnaz; Atai, Nadia; Aldikacti, Berent; Floyd, Frederick P.; H. Khankhel, Aimal; Thapar, Vishal; Hochberg, Fred H.; Sequist, Lecia; Nahed, Brian; S. Carter, Bob; Toner, Mehmet; Balaj, Leonora; T. Ting, David; Breakefield, Xandra; Stott, Shannon
    Extracellular vesicles (EVs) carry RNA, DNA, proteins, and lipids. Specifically, tumor-derived EVs have the potential to be utilized as disease-specific biomarkers. However, a lack of methods to isolate tumor-specific EVs has limited their use in clinical settings. Here we report a sensitive analytical microfluidic platform (EVHB-Chip) that enables tumor-specific EV-RNA isolation within 3 h. Using the EVHB-Chip, we achieve 94% tumor-EV specificity, a limit of detection of 100 EVs per μL, and a 10-fold increase in tumor RNA enrichment in comparison to other methods. Our approach allows for the subsequent release of captured tumor EVs, enabling downstream characterization and functional studies. Processing serum and plasma samples from glioblastoma multiforme (GBM) patients, we can detect the mutant EGFRvIII mRNA. Moreover, using next-generation RNA sequencing, we identify genes specific to GBM as well as transcripts that are hallmarks for the four genetic subtypes of the disease.
  • Thumbnail Image
    Publication
    Disease onset in X-linked dystonia-parkinsonism correlates with expansion of a hexameric repeat within an SVA retrotransposon in TAF1
    (National Academy of Sciences, 2017) Bragg, D. Cristopher; Mangkalaphiban, Kotchaphorn; Vaine, Christine; Kulkarni, Nichita J.; Shin, David; Yadav, Rachita; Dhakal, Jyotsna; Ton, Mai-Linh; Cheng, Anne; Russo, Christopher T.; Ang, Mark; Acuña, Patrick; Go, Criscely; Franceour, Taylor N.; Multhaupt-Buell, Trisha; Ito, Naoto; Müller, Ulrich; Hendriks, William; Breakefield, Xandra; Sharma, Nutan; Ozelius, Laurie
    X-linked dystonia-parkinsonism (XDP) is a neurodegenerative disease associated with an antisense insertion of a SINE-VNTR-Alu (SVA)-type retrotransposon within an intron of TAF1. This unique insertion coincides with six additional noncoding sequence changes in TAF1, the gene that encodes TATA-binding protein–associated factor-1, which appear to be inherited together as an identical haplotype in all reported cases. Here we examined the sequence of this SVA in XDP patients (n = 140) and detected polymorphic variation in the length of a hexanucleotide repeat domain, (CCCTCT)n. The number of repeats in these cases ranged from 35 to 52 and showed a highly significant inverse correlation with age at disease onset. Because other SVAs exhibit intrinsic promoter activity that depends in part on the hexameric domain, we assayed the transcriptional regulatory effects of varying hexameric lengths found in the unique XDP SVA retrotransposon using luciferase reporter constructs. When inserted sense or antisense to the luciferase reading frame, the XDP variants repressed or enhanced transcription, respectively, to an extent that appeared to vary with length of the hexamer. Further in silico analysis of this SVA sequence revealed multiple motifs predicted to form G-quadruplexes, with the greatest potential detected for the hexameric repeat domain. These data directly link sequence variation within the XDP-specific SVA sequence to phenotypic variability in clinical disease manifestation and provide insight into potential mechanisms by which this intronic retroelement may induce transcriptional interference in TAF1 expression.
  • Thumbnail Image
    Publication
    CRISPR/Cas9 Mediated Disruption of the Swedish APP Allele as a Therapeutic Approach for Early-Onset Alzheimer’s Disease
    (American Society of Gene & Cell Therapy, 2018) György, Bence; Loov, Camilla; Zaborowski, Mikołaj P.; Takeda, Shuko; Kleinstiver, Benjamin; Commins, Caitlin; Kastanenka, Ksenia; Mu, Dakai; Volak, Adrienn; Giedraitis, Vilmantas; Lannfelt, Lars; Maguire, Casey; Joung, J. Keith; Hyman, Bradley; Breakefield, Xandra; Ingelsson, Martin
    The APPswe (Swedish) mutation in the amyloid precursor protein (APP) gene causes dominantly inherited Alzheimer’s disease (AD) as a result of increased β-secretase cleavage of the amyloid-β (Aβ) precursor protein. This leads to abnormally high Aβ levels, not only in brain but also in peripheral tissues of mutation carriers. Here, we selectively disrupted the human mutant APPSW allele using CRISPR. By applying CRISPR/Cas9 from Streptococcus pyogenes, we generated allele-specific deletions of either APPSW or APPWT. As measured by ELISA, conditioned media of targeted patient-derived fibroblasts displayed an approximate 60% reduction in secreted Aβ. Next, coding sequences for the APPSW-specific guide RNA (gRNA) and Cas9 were packaged into separate adeno-associated viral (AAV) vectors. Site-specific indel formation was achieved both in primary neurons isolated from APPSW transgenic mouse embryos (Tg2576) and after co-injection of these vectors into hippocampus of adult mice. Taken together, we here present proof-of-concept data that CRISPR/Cas9 can selectively disrupt the APPSW allele both ex vivo and in vivo—and thereby decrease pathogenic Aβ. Hence, this system may have the potential to be developed as a tool for gene therapy against AD caused by APPswe and other point mutations associated with increased Aβ.
  • Thumbnail Image
    Publication
    Mutant torsinA in the heterozygous DYT1 state compromises HSV propagation in infected neurons and fibroblasts
    (Nature Publishing Group UK, 2018) György, Bence; Cruz, Lilian; Yellen, David; Aufiero, Massimo; Alland, Isabel; Zhang, Xuan; Ericsson, Maria; Fraefel, Cornel; Li, Yu-Ching; Takeda, Shuko; Hyman, Bradley; Breakefield, Xandra
    Most cases of early onset torsion dystonia (DYT1) are caused by a 3-base pair deletion in one allele of the TOR1A gene causing loss of a glutamate in torsinA, a luminal protein in the nuclear envelope. This dominantly inherited neurologic disease has reduced penetrance and no other medical manifestations. It has been challenging to understand the neuronal abnormalities as cells and mouse models which are heterozygous (Het) for the mutant allele are quite similar to wild-type (WT) controls. Here we found that patient fibroblasts and mouse neurons Het for this mutation showed significant differences from WT cells in several parameters revealed by infection with herpes simplex virus type 1 (HSV) which replicates in the nucleus and egresses out through the nuclear envelope. Using a red fluorescent protein capsid to monitor HSV infection, patient fibroblasts showed decreased viral plaque formation as compared to controls. Mouse Het neurons had a decrease in cytoplasmic, but not nuclear HSV fluorescence, and reduced numbers of capsids entering axons as compared to infected WT neurons. These findings point to altered dynamics of the nuclear envelope in cells with the patient genotype, which can provide assays to screen for therapeutic agents that can normalize these cells.
  • Thumbnail Image
    Publication
    Dopa-Responsive Dystonia: Functional Analysis of Single Nucleotide Substitutions within the 5’ Untranslated GCH1 Region
    (Public Library of Science, 2013) Armata, Ioanna A.; Balaj, Leonora; Kuster, John K.; Zhang, Xuan; Tsai, Shelun; Armatas, Andreas A.; Multhaupt-Buell, Trisha J.; Soberman, Roy; Breakefield, Xandra; Ichinose, Hiroshi; Sharma, Nutan
    Background: Mutations in the GCH1 gene are associated with childhood onset, dopa-responsive dystonia (DRD). Correct diagnosis of DRD is crucial, given the potential for complete recovery once treated with L-dopa. The majority of DRD associated mutations lie within the coding region of the GCH1 gene, but three additional single nucleotide sequence substitutions have been reported within the 5’ untranslated (5’UTR) region of the mRNA. The biologic significance of these 5’UTR GCH1 sequence substitutions has not been analyzed. Methodology/Principal Findings Luciferase reporter assays, quantitative real time PCR and RNA decay assays, combined with bioinformatics, revealed a pathogenic 5’UTR GCH1 substitution. The +142C>T single nucleotide 5’UTR substitution that segregates with affected status in DRD patients, substantially attenuates translation without altering RNA expression levels or stability. The +142C>T substitution disrupts translation most likely by creating an upstream initiation start codon (uAUG) and an upstream open reading frame (uORF). Conclusions/Significance: This is the first GCH1 regulatory substitution reported to act at a post-transcriptional level, increasing the list of genetic diseases caused by abnormal translation and reaffirming the importance of investigating potential regulatory substitutions in genetic diseases.
  • Thumbnail Image
    Publication
    miR-21 in the Extracellular Vesicles (EVs) of Cerebrospinal Fluid (CSF): A Platform for Glioblastoma Biomarker Development
    (Public Library of Science, 2013) Akers, Johnny C.; Ramakrishnan, Valya; Kim, Ryan; Skog, Johan; Nakano, Ichiro; Pingle, Sandeep; Kalinina, Juliya; Hua, Wei; Kesari, Santosh; Mao, Ying; Breakefield, Xandra; Hochberg, Fred H; Van Meir, Erwin G.; Carter, Bob S.; Chen, Clark C.
    Glioblastoma cells secrete extra-cellular vesicles (EVs) containing microRNAs (miRNAs). Analysis of these EV miRNAs in the bio-fluids of afflicted patients represents a potential platform for biomarker development. However, the analytic algorithm for quantitative assessment of EV miRNA remains under-developed. Here, we demonstrate that the reference transcripts commonly used for quantitative PCR (including GAPDH, 18S rRNA, and hsa-miR-103) were unreliable for assessing EV miRNA. In this context, we quantitated EV miRNA in absolute terms and normalized this value to the input EV number. Using this method, we examined the abundance of miR-21, a highly over-expressed miRNA in glioblastomas, in EVs. In a panel of glioblastoma cell lines, the cellular levels of miR-21 correlated with EV miR-21 levels (p<0.05), suggesting that glioblastoma cells actively secrete EVs containing miR-21. Consistent with this hypothesis, the CSF EV miR-21 levels of glioblastoma patients (n=13) were, on average, ten-fold higher than levels in EVs isolated from the CSF of non-oncologic patients (n=13, p<0.001). Notably, none of the glioblastoma CSF harbored EV miR-21 level below 0.25 copies per EV in this cohort. Using this cut-off value, we were able to prospectively distinguish CSF derived from glioblastoma and non-oncologic patients in an independent cohort of twenty-nine patients (Sensitivity=87%; Specificity=93%; AUC=0.91, p<0.01). Our results suggest that CSF EV miRNA analysis of miR-21 may serve as a platform for glioblastoma biomarker development.
  • Thumbnail Image
    Publication
    BEAMing and Droplet Digital PCR Analysis of Mutant IDH1 mRNA in Glioma Patient Serum and Cerebrospinal Fluid Extracellular Vesicles
    (Nature Publishing Group, 2013) Chen, Walter; Balaj, Leonora; Liau, Linda M; Samuels, Michael L; Kotsopoulos, Steve K; Maguire, Casey; LoGuidice, Lori; Soto, Horacio; Garrett, Matthew; Zhu, Lin Dan; Sivaraman, Sarada; Chen, Clark; Wong, Eric T; Carter, Bob S; Hochberg, Fred H; Breakefield, Xandra; Skog, Johan
    Development of biofluid-based molecular diagnostic tests for cancer is an important step towards tumor characterization and real-time monitoring in a minimally invasive fashion. Extracellular vesicles (EVs) are released from tumor cells into body fluids and can provide a powerful platform for tumor biomarkers because they carry tumor proteins and nucleic acids. Detecting rare point mutations in the background of wild-type sequences in biofluids such as blood and cerebrospinal fluid (CSF) remains a major challenge. Techniques such as BEAMing (beads, emulsion, amplification, magnetics) PCR and droplet digital PCR (ddPCR) are substantially more sensitive than many other assays for mutant sequence detection. Here, we describe a novel approach that combines biofluid EV RNA and BEAMing RT-PCR (EV-BEAMing), as well droplet digital PCR to interrogate mutations from glioma tumors. EVs from CSF of patients with glioma were shown to contain mutant IDH1 transcripts, and we were able to reliably detect and quantify mutant and wild-type IDH1 RNA transcripts in CSF of patients with gliomas. EV-BEAMing and EV-ddPCR represent a valuable new strategy for cancer diagnostics, which can be applied to a variety of biofluids and neoplasms.
  • Thumbnail Image
    Publication
    Chip-based analysis of exosomal mRNA mediating drug resistance in glioblastoma
    (Nature Pub. Group, 2015) Shao, Huilin; Chung, Jaehoon; Lee, Kyungheon; Balaj, Leonora; Min, Changwook; Carter, Bob S.; Hochberg, Fred H.; Breakefield, Xandra; Lee, Hakho; Weissleder, Ralph
    Real-time monitoring of drug efficacy in glioblastoma multiforme (GBM) is a major clinical problem as serial re-biopsy of primary tumours is often not a clinical option. MGMT (O6-methylguanine DNA methyltransferase) and APNG (alkylpurine-DNA-N-glycosylase) are key enzymes capable of repairing temozolomide-induced DNA damages and their levels in tissue are inversely related to treatment efficacy. Yet, serial clinical analysis remains difficult, and, when done, primarily relies on promoter methylation studies of tumour biopsy material at the time of initial surgery. Here we present a microfluidic chip to analyse mRNA levels of MGMT and APNG in enriched tumour exosomes obtained from blood. We show that exosomal mRNA levels of these enzymes correlate well with levels found in parental cells and that levels change considerably during treatment of seven patients. We propose that if validated on a larger cohort of patients, the method may be used to predict drug response in GBM patients.
  • Thumbnail Image
    Publication
    Meeting report: discussions and preliminary findings on extracellular RNA measurement methods from laboratories in the NIH Extracellular RNA Communication Consortium
    (Co-Action Publishing, 2015) Laurent, Louise C.; Abdel-Mageed, Asim B.; Adelson, P. David; Arango, Jorge; Balaj, Leonora; Breakefield, Xandra; Carlson, Elizabeth; Carter, Bob S.; Majem, Blanca; Chen, Clark C.; Cocucci, Emanuele; Danielson, Kirsty; Courtright, Amanda; Das, Saumya; Elmageed, Zakaria Y. Abd; Enderle, Daniel; Ezrin, Alan; Ferrer, Marc; Freedman, Jane; Galas, David; Gandhi, Roopali; Huentelman, Matthew J.; Van Keuren-Jensen, Kendall; Kalani, Yashar; Kim, Yong; Krichevsky, Anna; Lai, Charles; Lal-Nag, Madhu; Laurent, Clara D.; Leonardo, Trevor; Li, Feng; Malenica, Ivana; Mondal, Debasis; Nejad, Parham; Patel, Tushar; Raffai, Robert L.; Rubio, Renee; Skog, Johan; Spetzler, Robert; Sun, Jie; Tanriverdi, Kahraman; Vickers, Kasey; Wang, Liang; Wang, Yaoyu; Wei, Zhiyun; Weiner, Howard; Wong, David; Yan, Irene K.; Yeri, Ashish; Gould, Stephen
    Extracellular RNAs (exRNAs) have been identified in all tested biofluids and have been associated with a variety of extracellular vesicles, ribonucleoprotein complexes and lipoprotein complexes. Much of the interest in exRNAs lies in the fact that they may serve as signalling molecules between cells, their potential to serve as biomarkers for prediction and diagnosis of disease and the possibility that exRNAs or the extracellular particles that carry them might be used for therapeutic purposes. Among the most significant bottlenecks to progress in this field is the lack of robust and standardized methods for collection and processing of biofluids, separation of different types of exRNA-containing particles and isolation and analysis of exRNAs. The Sample and Assay Standards Working Group of the Extracellular RNA Communication Consortium is a group of laboratories funded by the U.S. National Institutes of Health to develop such methods. In our first joint endeavour, we held a series of conference calls and in-person meetings to survey the methods used among our members, placed them in the context of the current literature and used our findings to identify areas in which the identification of robust methodologies would promote rapid advancements in the exRNA field.
  • Thumbnail Image
    Publication
    Visualization and tracking of tumour extracellular vesicle delivery and RNA translation using multiplexed reporters
    (Nature Pub. Group, 2015) Lai, Charles; Kim, Edward Y.; Badr, Christian; Weissleder, Ralph; Mempel, Thorsten; Tannous, Bakhos; Breakefield, Xandra
    Accurate spatiotemporal assessment of extracellular vesicle (EV) delivery and cargo RNA translation requires specific and robust live-cell imaging technologies. Here we engineer optical reporters to label multiple EV populations for visualization and tracking of tumour EV release, uptake and exchange between cell populations both in culture and in vivo. Enhanced green fluorescence protein (EGFP) and tandem dimer Tomato (tdTomato) were fused at NH2-termini with a palmitoylation signal (PalmGFP, PalmtdTomato) for EV membrane labelling. To monitor EV-RNA cargo, transcripts encoding PalmtdTomato were tagged with MS2 RNA binding sequences and detected by co-expression of bacteriophage MS2 coat protein fused with EGFP. By multiplexing fluorescent and bioluminescent EV membrane reporters, we reveal the rapid dynamics of both EV uptake and translation of EV-delivered cargo mRNAs in cancer cells that occurred within 1-hour post-horizontal transfer between cells. These studies confirm that EV-mediated communication is dynamic and multidirectional between cells with delivery of functional mRNA.