Person:
Parmar, Chintan

Loading...
Profile Picture

Email Address

AA Acceptance Date

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Parmar

First Name

Chintan

Name

Parmar, Chintan

Search Results

Now showing 1 - 7 of 7
  • Thumbnail Image
    Publication
    Defining the biological basis of radiomic phenotypes in lung cancer
    (eLife Sciences Publications, Ltd, 2017) Grossmann, Patrick; Stringfield, Olya; El-Hachem, Nehme; Bui, Marilyn M; Rios Velazquez, Emmanuel; Parmar, Chintan; Leijenaar, Ralph TH; Haibe-Kains, Benjamin; Lambin, Philippe; Gillies, Robert J; Aerts, Hugo
    Medical imaging can visualize characteristics of human cancer noninvasively. Radiomics is an emerging field that translates these medical images into quantitative data to enable phenotypic profiling of tumors. While radiomics has been associated with several clinical endpoints, the complex relationships of radiomics, clinical factors, and tumor biology are largely unknown. To this end, we analyzed two independent cohorts of respectively 262 North American and 89 European patients with lung cancer, and consistently identified previously undescribed associations between radiomic imaging features, molecular pathways, and clinical factors. In particular, we found a relationship between imaging features, immune response, inflammation, and survival, which was further validated by immunohistochemical staining. Moreover, a number of imaging features showed predictive value for specific pathways; for example, intra-tumor heterogeneity features predicted activity of RNA polymerase transcription (AUC = 0.62, p=0.03) and intensity dispersion was predictive of the autodegration pathway of a ubiquitin ligase (AUC = 0.69, p<10-4). Finally, we observed that prognostic biomarkers performed highest when combining radiomic, genetic, and clinical information (CI = 0.73, p<10-9) indicating complementary value of these data. In conclusion, we demonstrate that radiomic approaches permit noninvasive assessment of both molecular and clinical characteristics of tumors, and therefore have the potential to advance clinical decision-making by systematically analyzing standard-of-care medical images. DOI: http://dx.doi.org/10.7554/eLife.23421.001
  • Thumbnail Image
    Publication
    Author Correction: Deep Learning for Fully-Automated Localization and Segmentation of Rectal Cancer on Multiparametric MR
    (Nature Publishing Group UK, 2018) Trebeschi, Stefano; van Griethuysen, Joost J. M.; Lambregts, Doenja M. J.; Lahaye, Max J.; Parmar, Chintan; Bakers, Frans C. H.; Peters, Nicky H. G. M.; Beets-Tan, Regina G. H.; Aerts, Hugo
  • Thumbnail Image
    Publication
    Application of the 3D slicer chest imaging platform segmentation algorithm for large lung nodule delineation
    (Public Library of Science, 2017) Yip, Stephen S. F.; Parmar, Chintan; Blezek, Daniel; Estepar, Raul San Jose; Pieper, Steve; Kim, John; Aerts, Hugo
    Purpose Accurate segmentation of lung nodules is crucial in the development of imaging biomarkers for predicting malignancy of the nodules. Manual segmentation is time consuming and affected by inter-observer variability. We evaluated the robustness and accuracy of a publically available semiautomatic segmentation algorithm that is implemented in the 3D Slicer Chest Imaging Platform (CIP) and compared it with the performance of manual segmentation. Methods: CT images of 354 manually segmented nodules were downloaded from the LIDC database. Four radiologists performed the manual segmentation and assessed various nodule characteristics. The semiautomatic CIP segmentation was initialized using the centroid of the manual segmentations, thereby generating four contours for each nodule. The robustness of both segmentation methods was assessed using the region of uncertainty (δ) and Dice similarity index (DSI). The robustness of the segmentation methods was compared using the Wilcoxon-signed rank test (pWilcoxon<0.05). The Dice similarity index (DSIAgree) between the manual and CIP segmentations was computed to estimate the accuracy of the semiautomatic contours. Results: The median computational time of the CIP segmentation was 10 s. The median CIP and manually segmented volumes were 477 ml and 309 ml, respectively. CIP segmentations were significantly more robust than manual segmentations (median δCIP = 14ml, median dsiCIP = 99% vs. median δmanual = 222ml, median dsimanual = 82%) with pWilcoxon~10−16. The agreement between CIP and manual segmentations had a median DSIAgree of 60%. While 13% (47/354) of the nodules did not require any manual adjustment, minor to substantial manual adjustments were needed for 87% (305/354) of the nodules. CIP segmentations were observed to perform poorly (median DSIAgree≈50%) for non-/sub-solid nodules with subtle appearances and poorly defined boundaries. Conclusion: Semi-automatic CIP segmentation can potentially reduce the physician workload for 13% of nodules owing to its computational efficiency and superior stability compared to manual segmentation. Although manual adjustment is needed for many cases, CIP segmentation provides a preliminary contour for physicians as a starting point.
  • Thumbnail Image
    Publication
    Associations between radiologist-defined semantic and automatically computed radiomic features in non-small cell lung cancer
    (Nature Publishing Group UK, 2017) Yip, Stephen S. F.; Liu, Ying; Parmar, Chintan; Li, Qian; Liu, Shichang; Qu, Fangyuan; Ye, Zhaoxiang; Gillies, Robert J.; Aerts, Hugo
    Tumor phenotypes captured in computed tomography (CT) images can be described qualitatively and quantitatively using radiologist-defined “semantic” and computer-derived “radiomic” features, respectively. While both types of features have shown to be promising predictors of prognosis, the association between these groups of features remains unclear. We investigated the associations between semantic and radiomic features in CT images of 258 non-small cell lung adenocarcinomas. The tumor imaging phenotypes were described using 9 qualitative semantic features that were scored by radiologists, and 57 quantitative radiomic features that were automatically calculated using mathematical algorithms. Of the 9 semantic features, 3 were rated on a binary scale (cavitation, air bronchogram, and calcification) and 6 were rated on a categorical scale (texture, border definition, contour, lobulation, spiculation, and concavity). 32–41 radiomic features were associated with the binary semantic features (AUC = 0.56–0.76). The relationship between all radiomic features and the categorical semantic features ranged from weak to moderate (|Spearmen’s correlation| = 0.002–0.65). There are associations between semantic and radiomic features, however the associations were not strong despite being significant. Our results indicate that radiomic features may capture distinct tumor phenotypes that fail to be perceived by naked eye that semantic features do not describe and vice versa.
  • Thumbnail Image
    Publication
    Radiographic prediction of meningioma grade by semantic and radiomic features
    (Public Library of Science, 2017) Coroller, Thibaud; Bi, Wenya; Huynh, Elizabeth; Abedalthagafi, Malak; Aizer, Ayal A.; Greenwald, Noah; Parmar, Chintan; Narayan, Vivek; Wu, Winona; Miranda de Moura, Samuel; Gupta, Saksham; Beroukhim, Rameen; Wen, Patrick Y.; Al-Mefty, Ossama; Dunn, Ian; Santagata, Sandro; Alexander, Brian; Huang, Raymond; Aerts, Hugo
    Objectives: The clinical management of meningioma is guided by tumor grade and biological behavior. Currently, the assessment of tumor grade follows surgical resection and histopathologic review. Reliable techniques for pre-operative determination of tumor grade may enhance clinical decision-making. Methods: A total of 175 meningioma patients (103 low-grade and 72 high-grade) with pre-operative contrast-enhanced T1-MRI were included. Fifteen radiomic (quantitative) and 10 semantic (qualitative) features were applied to quantify the imaging phenotype. Area under the curve (AUC) and odd ratios (OR) were computed with multiple-hypothesis correction. Random-forest classifiers were developed and validated on an independent dataset (n = 44). Results: Twelve radiographic features (eight radiomic and four semantic) were significantly associated with meningioma grade. High-grade tumors exhibited necrosis/hemorrhage (ORsem = 6.6, AUCrad = 0.62–0.68), intratumoral heterogeneity (ORsem = 7.9, AUCrad = 0.65), non-spherical shape (AUCrad = 0.61), and larger volumes (AUCrad = 0.69) compared to low-grade tumors. Radiomic and sematic classifiers could significantly predict meningioma grade (AUCsem = 0.76 and AUCrad = 0.78). Furthermore, combining them increased the classification power (AUCradio = 0.86). Clinical variables alone did not effectively predict tumor grade (AUCclin = 0.65) or show complementary value with imaging data (AUCcomb = 0.84). Conclusions: We found a strong association between imaging features of meningioma and histopathologic grade, with ready application to clinical management. Combining qualitative and quantitative radiographic features significantly improved classification power.
  • Thumbnail Image
    Publication
    Associations of Radiomic Data Extracted from Static and Respiratory-Gated CT Scans with Disease Recurrence in Lung Cancer Patients Treated with SBRT
    (Public Library of Science, 2017) Huynh, Elizabeth; Coroller, Thibaud; Narayan, Vivek; Agrawal, Vishesh; Romano, John; Franco, Idalid; Parmar, Chintan; Hou, Ying; Mak, Raymond; Aerts, Hugo
    Radiomics aims to quantitatively capture the complex tumor phenotype contained in medical images to associate them with clinical outcomes. This study investigates the impact of different types of computed tomography (CT) images on the prognostic performance of radiomic features for disease recurrence in early stage non-small cell lung cancer (NSCLC) patients treated with stereotactic body radiation therapy (SBRT). 112 early stage NSCLC patients treated with SBRT that had static free breathing (FB) and average intensity projection (AIP) images were analyzed. Nineteen radiomic features were selected from each image type (FB or AIP) for analysis based on stability and variance. The selected FB and AIP radiomic feature sets had 6 common radiomic features between both image types and 13 unique features. The prognostic performances of the features for distant metastasis (DM) and locoregional recurrence (LRR) were evaluated using the concordance index (CI) and compared with two conventional features (tumor volume and maximum diameter). P-values were corrected for multiple testing using the false discovery rate procedure. None of the FB radiomic features were associated with DM, however, seven AIP radiomic features, that described tumor shape and heterogeneity, were (CI range: 0.638–0.676). Conventional features from FB images were not associated with DM, however, AIP conventional features were (CI range: 0.643–0.658). Radiomic and conventional multivariate models were compared between FB and AIP images using cross validation. The differences between the models were assessed using a permutation test. AIP radiomic multivariate models (median CI = 0.667) outperformed all other models (median CI range: 0.601–0.630) in predicting DM. None of the imaging features were prognostic of LRR. Therefore, image type impacts the performance of radiomic models in their association with disease recurrence. AIP images contained more information than FB images that were associated with disease recurrence in early stage NSCLC patients treated with SBRT, which suggests that AIP images may potentially be more optimal for the development of an imaging biomarker.
  • Thumbnail Image
    Publication
    Exploratory Study to Identify Radiomics Classifiers for Lung Cancer Histology
    (Frontiers Media S.A., 2016) Wu, Weimiao; Parmar, Chintan; Grossmann, Patrick; Quackenbush, John; Lambin, Philippe; Bussink, Johan; Mak, Raymond; Aerts, Hugo
    Background: Radiomics can quantify tumor phenotypic characteristics non-invasively by applying feature algorithms to medical imaging data. In this study of lung cancer patients, we investigated the association between radiomic features and the tumor histologic subtypes (adenocarcinoma and squamous cell carcinoma). Furthermore, in order to predict histologic subtypes, we employed machine-learning methods and independently evaluated their prediction performance. Methods: Two independent radiomic cohorts with a combined size of 350 patients were included in our analysis. A total of 440 radiomic features were extracted from the segmented tumor volumes of pretreatment CT images. These radiomic features quantify tumor phenotypic characteristics on medical images using tumor shape and size, intensity statistics, and texture. Univariate analysis was performed to assess each feature’s association with the histological subtypes. In our multivariate analysis, we investigated 24 feature selection methods and 3 classification methods for histology prediction. Multivariate models were trained on the training cohort and their performance was evaluated on the independent validation cohort using the area under ROC curve (AUC). Histology was determined from surgical specimen. Results: In our univariate analysis, we observed that fifty-three radiomic features were significantly associated with tumor histology. In multivariate analysis, feature selection methods ReliefF and its variants showed higher prediction accuracy as compared to other methods. We found that Naive Baye’s classifier outperforms other classifiers and achieved the highest AUC (0.72; p-value = 2.3 × 10−7) with five features: Stats_min, Wavelet_HLL_rlgl_lowGrayLevelRunEmphasis, Wavelet_HHL_stats_median, Wavelet_HLL_stats_skewness, and Wavelet_HLH_glcm_clusShade. Conclusion: Histological subtypes can influence the choice of a treatment/therapy for lung cancer patients. We observed that radiomic features show significant association with the lung tumor histology. Moreover, radiomics-based multivariate classifiers were independently validated for the prediction of histological subtypes. Despite achieving lower than optimal prediction accuracy (AUC 0.72), our analysis highlights the impressive potential of non-invasive and cost-effective radiomics for precision medicine. Further research in this direction could lead us to optimal performance and therefore to clinical applicability, which could enhance the efficiency and efficacy of cancer care.