Person:
Hochberg, Leigh

Loading...
Profile Picture

Email Address

AA Acceptance Date

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Hochberg

First Name

Leigh

Name

Hochberg, Leigh

Search Results

Now showing 1 - 7 of 7
  • Thumbnail Image
    Publication
    Restoration of reaching and grasping in a person with tetraplegia through brain-controlled muscle stimulation: a proof-of-concept demonstration
    (2017) Ajiboye, Abidemi Bolu; Willett, Francis R.; Young, Daniel R.; Memberg, William D.; Murphy, Brian A.; Miller, Jonathan P.; Walter, Benjamin L.; Sweet, Jennifer A.; Hoyen, Harry A.; Keith, Michael W.; Peckham, Paul Hunter; Simeral, John D.; Donoghue, John P.; Hochberg, Leigh; Kirsch, Robert F.
    SUMMARY Background: People with chronic tetraplegia due to high cervical spinal cord injury (SCI) can regain limb movements through coordinated electrical stimulation of peripheral muscles and nerves, known as Functional Electrical Stimulation (FES). Users typically command FES systems through other preserved, but limited and unrelated, volitional movements (e.g. facial muscle activity, head movements). We demonstrate an individual with traumatic high cervical SCI performing coordinated reaching and grasping movements using his own paralyzed arm and hand, reanimated through FES, and commanded using his own cortical signals through an intracortical brain-computer-interface (iBCI). Methods: The study participant (53 years old, C4, ASIA A) received two intracortical microelectrode arrays in the hand area of motor cortex, and 36 percutaneous electrodes for electrically stimulating hand, elbow, and shoulder muscles. The participant used a motorized mobile arm support for gravitational assistance and to provide humeral ab/adduction under cortical control. We assessed the participant’s ability to cortically command his paralyzed arm to perform simple single-joint arm/hand movements and functionally meaningful multi-joint movements. We compared iBCI control of his paralyzed arm to that of a virtual 3D arm. This study is registered with ClinicalTrials.gov, NCT00912041. Findings: The participant successfully cortically commanded single-joint and coordinated multi-joint arm movements for point-to-point target acquisitions (80% – 100% accuracy) using first a virtual arm, and second his own arm animated by FES. Using his paralyzed arm, the participant volitionally performed self-paced reaches to drink a mug of coffee (successfully completing 11 of 12 attempts within a single session) and feed himself. Interpretation This is the first demonstration of a combined FES+iBCI neuroprosthesis for both reaching and grasping for people with SCI resulting in chronic tetraplegia, and represents a major advance, with a clear translational path, for clinically viable neuroprostheses for restoring reaching and grasping post-paralysis.
  • Thumbnail Image
    Publication
    Evolving Applications, Technological Challenges and Future Opportunities in Neuromodulation: Proceedings of the Fifth Annual Deep Brain Stimulation Think Tank
    (Frontiers Media S.A., 2018) Ramirez-Zamora, Adolfo; Giordano, James J.; Gunduz, Aysegul; Brown, Peter; Sanchez, Justin C.; Foote, Kelly D.; Almeida, Leonardo; Starr, Philip A.; Bronte-Stewart, Helen M.; Hu, Wei; McIntyre, Cameron; Goodman, Wayne; Kumsa, Doe; Grill, Warren M.; Walker, Harrison C.; Johnson, Matthew D.; Vitek, Jerrold L.; Greene, David; Rizzuto, Daniel S.; Song, Dong; Berger, Theodore W.; Hampson, Robert E.; Deadwyler, Sam A.; Hochberg, Leigh; Schiff, Nicholas D.; Stypulkowski, Paul; Worrell, Greg; Tiruvadi, Vineet; Mayberg, Helen S.; Jimenez-Shahed, Joohi; Nanda, Pranav; Sheth, Sameer A.; Gross, Robert E.; Lempka, Scott F.; Li, Luming; Deeb, Wissam; Okun, Michael S.
    The annual Deep Brain Stimulation (DBS) Think Tank provides a focal opportunity for a multidisciplinary ensemble of experts in the field of neuromodulation to discuss advancements and forthcoming opportunities and challenges in the field. The proceedings of the fifth Think Tank summarize progress in neuromodulation neurotechnology and techniques for the treatment of a range of neuropsychiatric conditions including Parkinson's disease, dystonia, essential tremor, Tourette syndrome, obsessive compulsive disorder, epilepsy and cognitive, and motor disorders. Each section of this overview of the meeting provides insight to the critical elements of discussion, current challenges, and identified future directions of scientific and technological development and application. The report addresses key issues in developing, and emphasizes major innovations that have occurred during the past year. Specifically, this year's meeting focused on technical developments in DBS, design considerations for DBS electrodes, improved sensors, neuronal signal processing, advancements in development and uses of responsive DBS (closed-loop systems), updates on National Institutes of Health and DARPA DBS programs of the BRAIN initiative, and neuroethical and policy issues arising in and from DBS research and applications in practice.
  • Thumbnail Image
    Publication
    Inhibitory single neuron control of seizures and epileptic traveling waves in humans
    (BioMed Central, 2014) Ahmed, Omar Jamil; Kramer, Mark A; Truccolo, Wilson; Naftulin, Jason S; Potter, Nicholas S; Eskandar, Emad; Cosgrove, Garth R; Blum, Andrew S; Hochberg, Leigh; Cash, Sydney
  • Thumbnail Image
    Publication
    Human seizures self-terminate across spatial scales via a critical transition
    (Proceedings of the National Academy of Sciences, 2012) Kramer, M. A.; Truccolo, W.; Eden, U. T.; Lepage, K. Q.; Hochberg, Leigh; Eskandar, Emad; Madsen, Joseph; Lee, Jong; Maheshwari, A.; Halgren, E.; Chu, Catherine; Cash, Sydney
    Why seizures spontaneously terminate remains an unanswered fundamental question of epileptology. Here we present evidence that seizures self-terminate via a discontinuous critical transition or bifurcation. We show that human brain electrical activity at various spatial scales exhibits common dynamical signatures of an impending critical transition—slowing, increased correlation, and flickering—in the approach to seizure termination. In contrast, prolonged seizures (status epilepticus) repeatedly approach, but do not cross, the critical transition. To support these results, we implement a computational model that demonstrates that alternative stable attractors, representing the ictal and postictal states, emulate the observed dynamics. These results suggest that self-terminating seizures end through a common dynamical mechanism. This description constrains the specific biophysical mechanisms underlying seizure termination, suggests a dynamical understanding of status epilepticus, and demonstrates an accessible system for studying critical transitions in nature.
  • Thumbnail Image
    Publication
    High performance communication by people with paralysis using an intracortical brain-computer interface
    (eLife Sciences Publications, Ltd, 2017) Pandarinath, Chethan; Nuyujukian, Paul; Blabe, Christine H; Sorice, Brittany L; Saab, Jad; Willett, Francis R; Hochberg, Leigh; Shenoy, Krishna V; Henderson, Jaimie M
    Brain-computer interfaces (BCIs) have the potential to restore communication for people with tetraplegia and anarthria by translating neural activity into control signals for assistive communication devices. While previous pre-clinical and clinical studies have demonstrated promising proofs-of-concept (Serruya et al., 2002; Simeral et al., 2011; Bacher et al., 2015; Nuyujukian et al., 2015; Aflalo et al., 2015; Gilja et al., 2015; Jarosiewicz et al., 2015; Wolpaw et al., 1998; Hwang et al., 2012; Spüler et al., 2012; Leuthardt et al., 2004; Taylor et al., 2002; Schalk et al., 2008; Moran, 2010; Brunner et al., 2011; Wang et al., 2013; Townsend and Platsko, 2016; Vansteensel et al., 2016; Nuyujukian et al., 2016; Carmena et al., 2003; Musallam et al., 2004; Santhanam et al., 2006; Hochberg et al., 2006; Ganguly et al., 2011; O’Doherty et al., 2011; Gilja et al., 2012), the performance of human clinical BCI systems is not yet high enough to support widespread adoption by people with physical limitations of speech. Here we report a high-performance intracortical BCI (iBCI) for communication, which was tested by three clinical trial participants with paralysis. The system leveraged advances in decoder design developed in prior pre-clinical and clinical studies (Gilja et al., 2015; Kao et al., 2016; Gilja et al., 2012). For all three participants, performance exceeded previous iBCIs (Bacher et al., 2015; Jarosiewicz et al., 2015) as measured by typing rate (by a factor of 1.4–4.2) and information throughput (by a factor of 2.2–4.0). This high level of performance demonstrates the potential utility of iBCIs as powerful assistive communication devices for people with limited motor function. Clinical Trial No: NCT00912041 DOI: http://dx.doi.org/10.7554/eLife.18554.001
  • Thumbnail Image
    Publication
    Neural population dynamics in human motor cortex during movements in people with ALS
    (eLife Sciences Publications, Ltd, 2015) Pandarinath, Chethan; Gilja, Vikash; Blabe, Christine H; Nuyujukian, Paul; Sarma, Anish A; Sorice, Brittany L; Eskandar, Emad; Hochberg, Leigh; Henderson, Jaimie M; Shenoy, Krishna V
    The prevailing view of motor cortex holds that motor cortical neural activity represents muscle or movement parameters. However, recent studies in non-human primates have shown that neural activity does not simply represent muscle or movement parameters; instead, its temporal structure is well-described by a dynamical system where activity during movement evolves lawfully from an initial pre-movement state. In this study, we analyze neuronal ensemble activity in motor cortex in two clinical trial participants diagnosed with Amyotrophic Lateral Sclerosis (ALS). We find that activity in human motor cortex has similar dynamical structure to that of non-human primates, indicating that human motor cortex contains a similar underlying dynamical system for movement generation. DOI: http://dx.doi.org/10.7554/eLife.07436.001
  • Thumbnail Image
    Publication
    Reach and grasp by people with tetraplegia using a neurally controlled robotic arm
    (2012) Hochberg, Leigh; Bacher, Daniel; Jarosiewicz, Beata; Masse, Nicolas Y.; Simeral, John D.; Vogel, Joern; Haddadin, Sami; Liu, Jie; Cash, Sydney; van der Smagt, Patrick; Donoghue, John P.
    Paralysis following spinal cord injury (SCI), brainstem stroke, amyotrophic lateral sclerosis (ALS) and other disorders can disconnect the brain from the body, eliminating the ability to carry out volitional movements. A neural interface system (NIS)1–5 could restore mobility and independence for people with paralysis by translating neuronal activity directly into control signals for assistive devices. We have previously shown that people with longstanding tetraplegia can use an NIS to move and click a computer cursor and to control physical devices6–8. Able-bodied monkeys have used an NIS to control a robotic arm9, but it is unknown whether people with profound upper extremity paralysis or limb loss could use cortical neuronal ensemble signals to direct useful arm actions. Here, we demonstrate the ability of two people with long-standing tetraplegia to use NIS-based control of a robotic arm to perform three-dimensional reach and grasp movements. Participants controlled the arm over a broad space without explicit training, using signals decoded from a small, local population of motor cortex (MI) neurons recorded from a 96-channel microelectrode array. One of the study participants, implanted with the sensor five years earlier, also used a robotic arm to drink coffee from a bottle. While robotic reach and grasp actions were not as fast or accurate as those of an able-bodied person, our results demonstrate the feasibility for people with tetraplegia, years after CNS injury, to recreate useful multidimensional control of complex devices directly from a small sample of neural signals.