Person:
Anderson, Richard

Loading...
Profile Picture

Email Address

AA Acceptance Date

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Anderson

First Name

Richard

Name

Anderson, Richard

Search Results

Now showing 1 - 3 of 3
  • Thumbnail Image
    Publication
    UV fluorescence excitation imaging of healing of wounds in skin: Evaluation of wound closure in organ culture model
    (John Wiley and Sons Inc., 2016) Wang, Ying; Gutierrez‐Herrera, Enoch; Ortega‐Martinez, Antonio; Anderson, Richard; Franco, Walfre
    Background and Objective Molecules native to tissue that fluoresce upon light excitation can serve as reporters of cellular activity and protein structure. In skin, the fluorescence ascribed to tryptophan is a marker of cellular proliferation, whereas the fluorescence ascribed to cross‐links of collagen is a structural marker. In this work, we introduce and demonstrate a simple but robust optical method to image the functional process of epithelialization and the exposed dermal collagen in wound healing of human skin in an organ culture model. Materials and Methods Non‐closing non‐grafted, partial closing non‐grafted, and grafted wounds were created in ex vivo human skin and kept in culture. A wide‐field UV fluorescence excitation imaging system was used to visualize epithelialization of the exposed dermis and quantitate wound area, closure, and gap. Histology (H&E staining) was also used to evaluate epithelialization. Results: The endogenous fluorescence excitation of cross‐links of collagen at 335 nm clearly shows the dermis missing epithelium, while the endogenous fluorescence excitation of tryptophan at 295 nm shows keratinocytes in higher proliferating state. The size of the non‐closing wound was 11.4 ± 1.8 mm and remained constant during the observation period, while the partial‐close wound reached 65.5 ± 4.9% closure by day 16. Evaluations of wound gaps using fluorescence excitation images and histology images are in agreement. Conclusions: We have established a fluorescence imaging method for studying epithelialization processes, evaluating keratinocyte proliferation, and quantitating closure during wound healing of skin in an organ culture model: the dermal fluorescence of pepsin‐digestible collagen cross‐links can be used to quantitate wound size, closure extents, and gaps; and, the epidermal fluorescence ascribed to tryptophan can be used to monitor and quantitate functional states of epithelialization. UV fluorescence excitation imaging has the potential to become a valuable tool for research, diagnostic and educational purposes on evaluating the healing of wounds. Lasers Surg. Med. 48:678–685, 2016. © 2016 The Authors. Lasers in Surgery and Medicine Published by Wiley Periodicals, Inc.
  • Publication
    An elastic second skin
    (Springer Nature, 2016) Yu, Betty; Kang, Soo-Young; Akthakul, Ariya; Ramadurai, Nithin; Pilkenton, Morgan; Patel, Alpesh; Nashat, Amir; Anderson, Daniel; Sakamoto, Fernanda; Gilchrest, Barbara; Anderson, Richard; Langer, Robert
    We report the synthesis and application of an elastic, wearable crosslinked polymer layer (XPL) that mimics the properties of normal, youthful skin. XPL is made of a tunable polysiloxane-based material that can be engineered with specific elasticity, contractility, adhesion, tensile strength and occlusivity. XPL can be topically applied, rapidly curing at the skin interface without the need for heat- or light-mediated activation. In a pilot human study, we examined the performance of a prototype XPL that has a tensile modulus matching normal skin responses at low strain (< 40%), and that withstands elongations exceeding 250%, elastically recoiling with minimal strain-energy loss on repeated deformation. The application of XPL to the herniated lower-eyelid fat pads of 12 subjects resulted in an average 2-grade decrease in herniation appearance in a 5-point severity scale. The XPL platform may offer advanced solutions to compromised skin barrier function, pharmaceutical delivery, and wound dressings.
  • Thumbnail Image
    Publication
    A Novel Laser Vaccine Adjuvant Increases the Motility of Antigen Presenting Cells
    (Public Library of Science, 2010) Chen, Xinyuan; Kim, Pilhan; Farinelli, Bill; Doukas, Apostolos; Yun, Seok-Hyun; Gelfand, Jeffrey; Anderson, Richard; Wu, Mei
    Background: Development of a potent vaccine adjuvant without introduction of any side effects remains an unmet challenge in the field of the vaccine research. Methodology/Principal Findings: We found that laser at a specific setting increased the motility of antigen presenting cells (APCs) and immune responses, with few local or systemic side effects. This laser vaccine adjuvant (LVA) effect was induced by brief illumination of a small area of the skin or muscle with a nondestructive, 532 nm green laser prior to intradermal (i.d.) or intramuscular (i.m.) administration of vaccines at the site of laser illumination. The pre-illumination accelerated the motility of APCs as shown by intravital confocal microscopy, leading to sufficient antigen (Ag)-uptake at the site of vaccine injection and transportation of the Ag-captured APCs to the draining lymph nodes. As a result, the number of Ag+ dendritic cells (DCs) in draining lymph nodes was significantly higher in both the 1° and 2° draining lymph nodes in the presence than in the absence of LVA. Laser-mediated increases in the motility and lymphatic transportation of APCs augmented significantly humoral immune responses directed against a model vaccine ovalbumin (OVA) or influenza vaccine i.d. injected in both primary and booster vaccinations as compared to the vaccine itself. Strikingly, when the laser was delivered by a hair-like diffusing optical fiber into muscle, laser illumination greatly boosted not only humoral but also cell-mediated immune responses provoked by i.m. immunization with OVA relative to OVA alone. Conclusion/Significance: The results demonstrate the ability of this safe LVA to augment both humoral and cell-mediated immune responses. In comparison with all current vaccine adjuvants that are either chemical compounds or biological agents, LVA is novel in both its form and mechanism; it is risk-free and has distinct advantages over traditional vaccine adjuvants.