Person:
Marais, Elose

Loading...
Profile Picture

Email Address

AA Acceptance Date

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Marais

First Name

Elose

Name

Marais, Elose

Search Results

Now showing 1 - 7 of 7
  • Thumbnail Image
    Publication
    Isoprene Emissions in Africa Inferred from OMI Observations of Formaldehyde Columns
    (European Geosciences Union, 2012) Marais, Elose; Jacob, Daniel; Kurosu, Thomas; Chance, Kelly; Murphy, J. G.; Reeves, C.; Mills, G.; Casadio, S.; Millet, D. B.; Barkley, M. P.; Paulot, F.; Mao, J.
    We use 2005–2009 satellite observations of formaldehyde (HCHO) columns from the OMI instrument to infer biogenic isoprene emissions at monthly 1 × 1° resolution over the African continent. Our work includes new approaches to remove biomass burning influences using OMI absorbing aerosol optical depth data (to account for transport of fire plumes) and anthropogenic influences using AATSR satellite data for persistent small-flame fires (gas flaring). The resulting biogenic HCHO columns (ΩHCHO) from OMI follow closely the distribution of vegetation patterns in Africa. We infer isoprene emission (EISOP) from the local sensitivity S = ΔΩHCHO / ΔEISOP derived with the GEOS-Chem chemical transport model using two alternate isoprene oxidation mechanisms, and verify the validity of this approach using AMMA aircraft observations over West Africa and a longitudinal transect across central Africa. Displacement error (smearing) is diagnosed by anomalously high values of S and the corresponding data are removed. We find significant sensitivity of S to NOx under low-NOx conditions that we fit to a linear function of tropospheric column NO2. We estimate a 40% error in our inferred isoprene emissions under high-NOx conditions and 40–90% under low-NOx conditions. Our results suggest that isoprene emission from the central African rainforest is much lower than estimated by the state-of-the-science MEGAN inventory.
  • Thumbnail Image
    Publication
    Non-methane volatile organic compounds in Africa: a vew from space
    (2014-06-06) Marais, Elose; Jacob, Daniel James; Anderson, James; Chance, Kelly; McElroy, Michael
    Isoprene emissions affect human health, air quality, and the oxidative capacity of the atmosphere. Globally anthropogenic non-methane volatile organic compounds (NMVOC) emissions are lower than that of isoprene, but local hotspots are hazardous to human health and air quality. In Africa the tropics are a large source of isoprene, while Nigeria appears as a large contributor to regional anthropogenic NMVOC emissions. I make extensive use of space-based formaldehyde (HCHO) observations from the Ozone Monitoring Instrument (OMI) and the chemical transport model (CTM) GEOS-Chem to estimate and examine seasonality of isoprene emissions across Africa, and identify sources and air quality consequences of anthropogenic NMVOC emissions in Nigeria.
  • Thumbnail Image
    Publication
    Global Budget and Radiative Forcing of Black Carbon Aerosol: Constraints from Pole-to-Pole (HIPPO) Observations across the Pacific
    (Wiley-Blackwell, 2014) Wang, Qiaoqiao; Jacob, Daniel; Spackman, J. Ryan; Perring, Anne E.; Schwarz, Joshua P.; Moteki, Nobuhiro; Marais, Elose; Ge, Cui; Wang, Jun; Barrett, Steven R. H.
    We use a global chemical transport model (GEOS-Chem) to interpret aircraft curtain observations of black carbon (BC) aerosol over the Pacific from 85°N to 67°S during the 2009–2011 HIAPER (High-Performance Instrumented Airborne Platform for Environmental Research) Pole-to-Pole Observations (HIPPO) campaigns. Observed concentrations are very low, implying much more efficient scavenging than is usually implemented in models. Our simulation with a global source of \(6.5 Tg a^{−1}\) and mean tropospheric lifetime of 4.2 days (versus 6.8 ± 1.8 days for the Aerosol Comparisons between Observations and Models (AeroCom) models) successfully simulates BC concentrations in source regions and continental outflow and captures the principal features of the HIPPO data but is still higher by a factor of 2 (1.48 for column loads) over the Pacific. It underestimates BC absorbing aerosol optical depths (AAODs) from the Aerosol Robotic Network by 32% on a global basis. Only 8.7% of global BC loading in GEOS-Chem is above 5 km, versus 21 ± 11% for the AeroCom models, with important implications for radiative forcing estimates. Our simulation yields a global BC burden of 77 Gg, a global mean BC AAOD of 0.0017, and a top-of-atmosphere direct radiative forcing (TOA DRF) of \(0.19 W m^{−2}\), with a range of \(0.17–0.31 W m^{−2}\) based on uncertainties in the BC atmospheric distribution. Our TOA DRF is lower than previous estimates \((0.27 \pm 0.06 W m^{−2}\) in AeroCom, \(0.65–0.9 W m^{−2}\) in more recent studies). We argue that these previous estimates are biased high because of excessive BC concentrations over the oceans and in the free troposphere.
  • Thumbnail Image
    Publication
    Anthropogenic emissions of highly reactive volatile organic compounds in eastern Texas inferred from oversampling of satellite (OMI) measurements of HCHO columns
    (IOP Publishing, 2014) Zhu, Lei; Jacob, Daniel; Mickley, Loretta; Marais, Elose; Cohan, Daniel S; Yoshida, Yasuko; Duncan, Bryan N; González Abad, Gonzalo; Chance, Kelly
    Satellite observations of formaldehyde (HCHO) columns provide top-down constraints on emissions of highly reactive volatile organic compounds (HRVOCs). This approach has been used previously in the US to estimate isoprene emissions from vegetation, but application to anthropogenic emissions has been stymied by lack of a discernable HCHO signal. Here we show that temporal oversampling of HCHO data from the Ozone Monitoring Instrument (OMI) for 2005–2008 enables detection of urban and industrial plumes in eastern Texas including Houston, Port Arthur, and Dallas/Fort Worth. By spatially integrating the HCHO enhancement in the Houston plume observed by OMI we estimate an anthropogenic HCHO source of 250 ± 140 kmol h−1. This implies that anthropogenic HRVOC emissions in Houston are 4.8 ± 2.7 times higher than reported by the US Environmental Protection Agency inventory, and is consistent with field studies identifying large ethene and propene emissions from petrochemical industrial sources.
  • Thumbnail Image
    Publication
    Anthropogenic emissions in Nigeria and implications for atmospheric ozone pollution: A view from space
    (Elsevier BV, 2014) Marais, Elose; Jacob, Daniel; Wecht, Kevin James; Lerot, C.; Zhang, Liangran; Yu, Karen; Kurosu, Thomas; Chance, Kelly; Sauvage, B.
    Nigeria has a high population density and large fossil fuel resources but very poorly managed energy infrastructure. Satellite observations of formaldehyde (HCHO) and glyoxal (CHOCHO) reveal very large sources of anthropogenic nonmethane volatile organic compounds (NMVOCs) from the Lagos megacity and oil/gas operations in the Niger Delta. This is supported by aircraft observations over Lagos and satellite observations of methane in the Niger Delta. Satellite observations of carbon monoxide (CO) and nitrogen dioxide (NO2) show large seasonal emissions from open fires in December–February (DJF). Ventilation of central Nigeria is severely restricted at that time of year, leading to very poor ozone air quality as observed from aircraft (MOZAIC) and satellite (TES). Simulations with the GEOS-Chem chemical transport model (CTM) suggest that maximum daily 8-h average (MDA8) ozone exceeds 70 ppbv over the region on a seasonal mean basis, with significant contributions from both open fires (15–20 ppbv) and fuel/industrial emissions (7–9 ppbv). The already severe ozone pollution in Nigeria could worsen in the future as a result of demographic and economic growth, although this would be offset by a decrease in open fires.
  • Thumbnail Image
    Publication
    Improved model of isoprene emissions in Africa using Ozone Monitoring Instrument (OMI) satellite observations of formaldehyde: implications for oxidants and particulate matter
    (European Geosciences Union, 2014) Marais, Elose; Jacob, Daniel; Guenther, A.; Chance, Kelly; Kurosu, T. P.; Murphy, J. G.; Reeves, C. E.; Pye, H. O. T.
    We use a 2005–2009 record of isoprene emissions over Africa derived from OMI satellite observations of formaldehyde (HCHO) to better understand the factors controlling isoprene emission on the scale of the continent and evaluate the impact of isoprene emissions on atmospheric composition in Africa. OMI-derived isoprene emissions show large seasonality over savannas driven by temperature and leaf area index (LAI), and much weaker seasonality over equatorial forests driven by temperature. The commonly used MEGAN (version 2.1) global isoprene emission model reproduces this seasonality but is biased high, particularly for equatorial forests, when compared to OMI and relaxed-eddy accumulation measurements. Isoprene emissions in MEGAN are computed as the product of an emission factor Eo, LAI, and activity factors dependent on environmental variables. We use the OMI-derived emissions to provide improved estimates of Eo that are in good agreement with direct leaf measurements from field campaigns (r = 0.55, bias = −19%). The largest downward corrections to MEGAN Eo values are for equatorial forests and semi-arid environments, and this is consistent with latitudinal transects of isoprene over West Africa from the AMMA aircraft campaign. Total emission of isoprene in Africa is estimated to be 77 Tg C a−1, compared to 104 Tg C a−1 in MEGAN. Simulations with the GEOS-Chem oxidant-aerosol model suggest that isoprene emissions increase mean surface ozone in West Africa by up to 8 ppbv, and particulate matter by up to 1.5 μg m−3, due to coupling with anthropogenic influences.
  • Publication
    Glyoxal Yield From Isoprene Oxidation and Relation to Formaldehyde: Chemical Mechanism, Constraints From SENEX Aircraft Observations, and Interpretation of OMI Satellite Data
    (Copernicus GmbH, 2017-07-18) Miller, Christopher; Jacob, Daniel; Marais, Elose; Yu, Karen; Travis, Katherine; Kim, Patrick S.; Fisher, Jenny A.; Zhu, Lei; Wolfe, Glenn M.; Hanisco, Thomas F.; Keutsch, Frank; Kaiser, Jennifer; Min, Kyung-Eun; Brown, Steven S.; Washenfelder, Rebecca A.; Gonzalez Abad, Gonzalo; Chance, Kelly
    Glyoxal (CHOCHO) is produced in the atmosphere by the oxidation of volatile organic compounds (VOCs). Like formaldehyde (HCHO), another VOC oxidation product, it is measurable from space by solar backscatter. Isoprene emitted by vegetation is the dominant source of CHOCHO and HCHO in most of the world. We use aircraft observations of CHOCHO and HCHO from the SENEX campaign over the southeast US in summer 2013 to better understand the CHOCHO time-dependent yield from isoprene oxidation, its dependence on nitrogen oxides (NOx  ≡  NO + NO2), the behavior of the CHOCHO–HCHO relationship, the quality of OMI CHOCHO satellite observations, and the implications for using CHOCHO observations from space as constraints on isoprene emissions. We simulate the SENEX and OMI observations with the Goddard Earth Observing System chemical transport model (GEOS-Chem) featuring a new chemical mechanism for CHOCHO formation from isoprene. The mechanism includes prompt CHOCHO formation under low-NOx conditions following the isomerization of the isoprene peroxy radical (ISOPO2). The SENEX observations provide support for this prompt CHOCHO formation pathway, and are generally consistent with the GEOS-Chem mechanism. Boundary layer CHOCHO and HCHO are strongly correlated in the observations and the model, with some departure under low-NOx conditions due to prompt CHOCHO formation. SENEX vertical profiles indicate a free-tropospheric CHOCHO background that is absent from the model. The OMI CHOCHO data provide some support for this free-tropospheric background and show southeast US enhancements consistent with the isoprene source but a factor of 2 too low. Part of this OMI bias is due to excessive surface reflectivities assumed in the retrieval. The OMI CHOCHO and HCHO seasonal data over the southeast US are tightly correlated and provide redundant proxies of isoprene emissions. Higher temporal resolution in future geostationary satellite observations may enable detection of the prompt CHOCHO production under low-NOx conditions apparent in the SENEX data.