Person: Xiao, Ru
Loading...
Email Address
AA Acceptance Date
Birth Date
Search Results
Now showing 1 - 3 of 3
Publication Single stranded adeno-associated virus achieves efficient gene transfer to anterior segment in the mouse eye(Public Library of Science, 2017) Wang, Li; Xiao, Ru; Andres-Mateos, Eva; Vandenberghe, LukAdeno-associated viruses (AAVs) are used extensively as a gene delivery vehicle for retinal gene therapy, yet its ability to target the anterior segment of the eye, critical to unlocking therapeutic opportunities, is less characterized. Previously, self-complimentary (sc) AAV was shown to be necessary for transduction of the cornea and trabecular meshwork (TM), limiting the size of the gene transfer cassette, likely due to a block in second strand synthesis thought to be required for functional transduction. Here, we evaluated several AAV capsids in a single stranded (ss) genome conformation for their ability to overcome the need for scAAV for targeting corneal endothelium and TM. AAV2, 8, and a recently synthetically developed AAV called Anc80L65 were evaluated in vitro and in vivo by intracameral injection in mice. Results show that although scAAV2 demonstrated superior infectivity in vitro including Human Trabecular meshwork (HTM) immortalized cell lines; Anc80L65 transduced following a single intracameral injection efficiently all components of the mouse anterior segment, including the TM, corneal stroma, and endothelial cells. These results suggest that Anc80L65 is able to overcome the requirement for scAAV genomes to enable TM and corneal targeting, expanding the potential experimental and therapeutic use of AAV gene transfer in the anterior segment of the eye.Publication Evaluating Efficiencies of Dual AAV Approaches for Retinal Targeting(Frontiers Media S.A., 2017) Carvalho, Livia S.; Turunen, Heikki T.; Wassmer, Sarah J.; Luna-Velez, María V.; Xiao, Ru; Bennett, Jean; Vandenberghe, LukRetinal gene therapy has come a long way in the last few decades and the development and improvement of new gene delivery technologies has been exponential. The recent promising results from the first clinical trials for inherited retinal degeneration due to mutations in RPE65 have provided a major breakthrough in the field and have helped cement the use of recombinant adeno-associated viruses (AAV) as the major tool for retinal gene supplementation. One of the key problems of AAV however, is its limited capacity for packaging genomic information to a maximum of around 4.8 kb. Previous studies have demonstrated that homologous recombination and/or inverted terminal repeat (ITR) mediated concatemerization of two overlapping AAV vectors can partially overcome the size limitation and help deliver larger transgenes. The aim of this study was to investigate and compare the use of different AAV dual-vector approaches in the mouse retina using a systematic approach comparing efficiencies in vitro and in vivo using a unique oversized reporter construct. We show that the hybrid approach relying on vector genome concatemerization by highly recombinogenic sequences and ITRs sequence overlap offers the best levels of reconstitution both in vitro and in vivo compared to trans-splicing and overlap strategies. Our data also demonstrate that dose and vector serotype do not affect reconstitution efficiency but a discrepancy between mRNA and protein expression data suggests a bottleneck affecting translation.Publication Cochlear gene therapy with ancestral AAV in adult mice: complete transduction of inner hair cells without cochlear dysfunction(Nature Publishing Group, 2017) Suzuki, Jun; Hashimoto, Ken; Xiao, Ru; Vandenberghe, Luk; Liberman, M.The use of viral vectors for inner ear gene therapy is receiving increased attention for treatment of genetic hearing disorders. Most animal studies to date have injected viral suspensions into neonatal ears, via the round window membrane. Achieving transduction of hair cells, or sensory neurons, throughout the cochlea has proven difficult, and no studies have been able to efficiently transduce sensory cells in adult ears while maintaining normal cochlear function. Here, we show, for the first time, successful transduction of all inner hair cells and the majority of outer hair cells in an adult cochlea via virus injection into the posterior semicircular canal. We used a “designer” AAV, AAV2/Anc80L65, in which the main capsid proteins approximate the ancestral sequence state of AAV1, 2, 8, and 9. Our injections also transduced ~10% of spiral ganglion cells and a much larger fraction of their satellite cells. In the vestibular sensory epithelia, the virus transduced large numbers of hair cells and virtually all the supporting cells, along with close to half of the vestibular ganglion cells. We conclude that this viral vector and this delivery route hold great promise for gene therapy applications in both cochlear and vestibular sense organs.