Person:

Neafsey, Daniel

Loading...
Profile Picture

Email Address

AA Acceptance Date

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Neafsey

First Name

Daniel

Name

Neafsey, Daniel

Search Results

Now showing 1 - 10 of 25
  • Publication

    Human Cerebral Malaria and Plasmodium falciparum Genotypes in Malawi

    (BioMed Central, 2012) Milner, Danny; Vareta, Jimmy; Valim, Clarissa; Montgomery, Jacqui; Daniels, Rachel; Volkman, Sarah; Neafsey, Daniel; Park, Daniel John; Schaffner, Stephen; Mahesh, Nira C; Barnes, Kayla G; Rosen, David M; Lukens, Amanda; Van-Tyne, Daria; Wiegand, Roger; Sabeti, Pardis; Seydel, Karl B; Glover, Simon J; Kamiza, Steve; Molyneux, Malcolm E; Taylor, Terrie E; Wirth, Dyann

    Background: Cerebral malaria, a severe form of Plasmodium falciparum infection, is an important cause of mortality in sub-Saharan African children. A Taqman 24 Single Nucleotide Polymorphisms (SNP) molecular barcode assay was developed for use in laboratory parasites which estimates genotype number and identifies the predominant genotype. Methods The 24 SNP assay was used to determine predominant genotypes in blood and tissues from autopsy and clinical patients with cerebral malaria. Results: Single genotypes were shared between the peripheral blood, the brain, and other tissues of cerebral malaria patients, while malaria-infected patients who died of non-malarial causes had mixed genetic signatures in tissues examined. Children with retinopathy-positive cerebral malaria had significantly less complex infections than those without retinopathy (OR = 3.7, 95% CI [1.51-9.10]).The complexity of infections significantly decreased over the malaria season in retinopathy-positive patients compared to retinopathy-negative patients. Conclusions: Cerebral malaria patients harbour a single or small set of predominant parasites; patients with incidental parasitaemia sustain infections involving diverse genotypes. Limited diversity in the peripheral blood of cerebral malaria patients and correlation with tissues supports peripheral blood samples as appropriate for genome-wide association studies of parasite determinants of pathogenicity.

  • Publication

    SNP Genotyping Identifies New Signatures of Selection in a Deep Sample of West African Plasmodium falciparum Malaria Parasites

    (Oxford University Press, 2012) Amambua-Ngwa, Alfred; Barnes, Kayla G.; Sene, Papa; Conway, David J.; Park, Daniel John; Volkman, Sarah; Bei, Amy; Lukens, Amanda; Van tyne, Daria; Ndiaye, Daouda; Wirth, Dyann; Neafsey, Daniel; Schaffner, Stephen

    We used a high-density single-nucleotide polymorphism array to genotype 75 Plasmodium falciparum isolates recently collected from Senegal and The Gambia to search for signals of selection in this malaria endemic region. We found little geographic or temporal stratification of the genetic diversity among the sampled parasites. Through application of the iHS and REHH haplotype-based tests for positive selection, we found evidence of recent selective sweeps at a known drug resistance locus, at several known antigenic loci, and at several genomic regions not previously identified as sites of recent selection. We discuss the value of deep population-specific genomic analyses for identifying selection signals within sampled endemic populations of parasites, which may correspond to local selection pressures such as distinctive therapeutic regimes or mosquito vectors.

  • Publication

    Breakdown in the Process of Incipient Speciation in Anopheles gambiae

    (Genetics Society of America, 2013) Nwakanma, Davis C.; Neafsey, Daniel; Jawara, Musa; Adiamoh, Majidah; Lund, Emily; Rodrigues, Amabelia; Loua, Kovana M.; Konate, Lassana; Sy, Ngayo; Dia, Ibrahima; Awolola, T. Samson; Muskavitch, Marc; Conway, David J.

    Understanding genetic causes and effects of speciation in sympatric populations of sexually reproducing eukaryotes is challenging, controversial, and of practical importance for controlling rapidly evolving pests and pathogens. The major African malaria vector mosquito Anopheles gambiae sensu stricto (s.s.) is considered to contain two incipient species with strong reproductive isolation, hybrids between the M and S molecular forms being very rare. Following recent observations of higher proportions of hybrid forms at a few sites in West Africa, we conducted new surveys of 12 sites in four contiguous countries (The Gambia, Senegal, Guinea-Bissau, and Republic of Guinea). Identification and genotyping of 3499 A. gambiae s.s. revealed high frequencies of M/S hybrid forms at each site, ranging from 5 to 42%, and a large spectrum of inbreeding coefficient values from 0.11 to 0.76, spanning most of the range expected between the alternative extremes of panmixia and assortative mating. Year-round sampling over 2 years at one of the sites in The Gambia showed that M/S hybrid forms had similar relative frequencies throughout periods of marked seasonal variation in mosquito breeding and abundance. Genome-wide scans with an Affymetrix high-density single-nucleotide polymorphism (SNP) microarray enabled replicate comparisons of pools of different molecular forms, in three separate populations. These showed strong differentiation between M and S forms only in the pericentromeric region of the X chromosome that contains the molecular form-specific marker locus, with only a few other loci showing minor differences. In the X chromosome, the M/S hybrid forms were more differentiated from M than from S forms, supporting a hypothesis of asymmetric introgression and backcrossing.

  • Publication

    Identification and Functional Validation of the Novel Antimalarial Resistance Locus PF10_0355 in Plasmodium falciparum

    (Public Library of Science, 2011) Van tyne, Daria; Park, Daniel John; Schaffner, Stephen; Neafsey, Daniel; Angelino, Elaine Lee; Cortese, Joseph F.; Barnes, Kayla G.; Rosen, David M.; Lukens, Amanda; Daniels, Rachel; Milner, Danny; Johnson, Charles A.; Shlyakhter, Ilya; Grossman, Sharon; Becker, Justin S.; Yamins, Daniel Louis Kanef; Karlsson, Elinor K; Ndiaye, Daouda; Sarr, Ousmane; Mboup, Souleymane; Happi, Christian; Furlotte, Nicholas A.; Eskin, Eleazar; Kang, Hyun Min; Hartl, Daniel; Birren, Bruce W.; Wiegand, Roger; Lander, Eric; Wirth, Dyann; Volkman, Sarah; Sabeti, Pardis

    The Plasmodium falciparum parasite's ability to adapt to environmental pressures, such as the human immune system and antimalarial drugs, makes malaria an enduring burden to public health. Understanding the genetic basis of these adaptations is critical to intervening successfully against malaria. To that end, we created a high-density genotyping array that assays over 17,000 single nucleotide polymorphisms (~1 SNP/kb), and applied it to 57 culture-adapted parasites from three continents. We characterized genome-wide genetic diversity within and between populations and identified numerous loci with signals of natural selection, suggesting their role in recent adaptation. In addition, we performed a genome-wide association study (GWAS), searching for loci correlated with resistance to thirteen antimalarials; we detected both known and novel resistance loci, including a new halofantrine resistance locus, PF10_0355. Through functional testing we demonstrated that PF10_0355 overexpression decreases sensitivity to halofantrine, mefloquine, and lumefantrine, but not to structurally unrelated antimalarials, and that increased gene copy number mediates resistance. Our GWAS and follow-on functional validation demonstrate the potential of genome-wide studies to elucidate functionally important loci in the malaria parasite genome.

  • Publication

    Stepwise Acquisition of Pyrimethamine Resistance in the Malaria Parasite

    (National Academy of Sciences, 2009) Lozovsky, Elena; Chookajorn, Thanat; Brown, Kyle M.; Imwong, Mallika; Shaw, Philip J.; Kamchonwongpaisan, Sumalee; Neafsey, Daniel; Weinreich, Daniel M.; Hartl, Daniel

    The spread of high-level pyrimethamine resistance in Africa threatens to curtail the therapeutic lifetime of antifolate antimalarials. We studied the possible evolutionary pathways in the evolution of pyrimethamine resistance using an approach in which all possible mutational intermediates were created by site-directed mutagenesis and assayed for their level of drug resistance. The coding sequence for dihydrofolate reductase (DHFR) from the malaria parasite Plasmodium falciparum was mutagenized, and tests were carried out in Escherichia coli under conditions in which the endogenous bacterial enzyme was selectively inhibited. We studied 4 key amino acid replacements implicated in pyrimethamine resistance: N51I, C59R, S108N, and I164L. Using empirical estimates of the mutational spectrum in P. falciparum and probabilities of fixation based on the relative levels of resistance, we found that the predicted favored pathways of drug resistance are consistent with those reported in previous kinetic studies, as well as DHFR polymorphisms observed in natural populations. We found that 3 pathways account for nearly 90% of the simulated realizations of the evolution of pyrimethamine resistance. The most frequent pathway (S108N and then C59R, N51I, and I164L) accounts for more than half of the simulated realizations. Our results also suggest an explanation for why I164L is detected in Southeast Asia and South America, but not at significant frequencies in Africa.

  • Publication

    Chromerid genomes reveal the evolutionary path from photosynthetic algae to obligate intracellular parasites

    (eLife Sciences Publications, Ltd, 2015) Woo, Yong H; Ansari, Hifzur; Otto, Thomas D; Klinger, Christen M; Kolisko, Martin; Michálek, Jan; Saxena, Alka; Shanmugam, Dhanasekaran; Tayyrov, Annageldi; Veluchamy, Alaguraj; Ali, Shahjahan; Bernal, Axel; del Campo, Javier; Cihlář, Jaromír; Flegontov, Pavel; Gornik, Sebastian G; Hajdušková, Eva; Horák, Aleš; Janouškovec, Jan; Katris, Nicholas J; Mast, Fred D; Miranda-Saavedra, Diego; Mourier, Tobias; Naeem, Raeece; Nair, Mridul; Panigrahi, Aswini K; Rawlings, Neil D; Padron-Regalado, Eriko; Ramaprasad, Abhinay; Samad, Nadira; Tomčala, Aleš; Wilkes, Jon; Neafsey, Daniel; Doerig, Christian; Bowler, Chris; Keeling, Patrick J; Roos, David S; Dacks, Joel B; Templeton, Thomas J; Waller, Ross F; Lukeš, Julius; Oborník, Miroslav; Pain, Arnab

    The eukaryotic phylum Apicomplexa encompasses thousands of obligate intracellular parasites of humans and animals with immense socio-economic and health impacts. We sequenced nuclear genomes of Chromera velia and Vitrella brassicaformis, free-living non-parasitic photosynthetic algae closely related to apicomplexans. Proteins from key metabolic pathways and from the endomembrane trafficking systems associated with a free-living lifestyle have been progressively and non-randomly lost during adaptation to parasitism. The free-living ancestor contained a broad repertoire of genes many of which were repurposed for parasitic processes, such as extracellular proteins, components of a motility apparatus, and DNA- and RNA-binding protein families. Based on transcriptome analyses across 36 environmental conditions, Chromera orthologs of apicomplexan invasion-related motility genes were co-regulated with genes encoding the flagellar apparatus, supporting the functional contribution of flagella to the evolution of invasion machinery. This study provides insights into how obligate parasites with diverse life strategies arose from a once free-living phototrophic marine alga. DOI: http://dx.doi.org/10.7554/eLife.06974.001

  • Publication

    Modeling malaria genomics reveals transmission decline and rebound in Senegal

    (Proceedings of the National Academy of Sciences, 2015) Daniels, Rachel; Schaffner, Stephen; Wenger, Edward A.; Proctor, Joshua L.; Chang, Hsiao-Han; Wong, Wesley; Baro, Nicholas; Ndiaye, Daouda; Fall, Fatou Ba; Ndiop, Medoune; Ba, Mady; Milner, Danny; Taylor, Terrie E.; Neafsey, Daniel; Volkman, Sarah; Eckhoff, Philip A.; Hartl, Daniel; Wirth, Dyann

    To study the effects of malaria-control interventions on parasite population genomics, we examined a set of 1,007 samples of the malaria parasite Plasmodium falciparum collected in Thiès, Senegal between 2006 and 2013. The parasite samples were genotyped using a molecular barcode of 24 SNPs. About 35% of the samples grouped into subsets with identical barcodes, varying in size by year and sometimes persisting across years. The barcodes also formed networks of related groups. Analysis of 164 completely sequenced parasites revealed extensive sharing of genomic regions. In at least two cases we found first-generation recombinant offspring of parents whose genomes are similar or identical to genomes also present in the sample. An epidemiological model that tracks parasite genotypes can reproduce the observed pattern of barcode subsets. Quantification of likelihoods in the model strongly suggests a reduction of transmission from 2006-2010 with a significant rebound in 2012-2013. The reduced transmission and rebound were confirmed directly by incidence data from Thiès. These findings imply that intensive intervention to control malaria results in rapid and dramatic changes in parasite population genomics. The results also suggest that genomics combined with epidemiological modeling may afford prompt, continuous, and cost-effective tracking of progress toward malaria elimination.

  • Publication

    A genomic and evolutionary approach reveals non-genetic drug resistance in malaria

    (BioMed Central, 2014) Herman, Jonathan D; Rice, Daniel; Ribacke, Ulf; Silterra, Jacob; Deik, Amy A; Moss, Eli L; Broadbent, Kate M; Neafsey, Daniel; Desai, Michael; Clish, Clary B; Mazitschek, Ralph; Wirth, Dyann

    Background: Drug resistance remains a major public health challenge for malaria treatment and eradication. Individual loci associated with drug resistance to many antimalarials have been identified, but their epistasis with other resistance mechanisms has not yet been elucidated. Results: We previously described two mutations in the cytoplasmic prolyl-tRNA synthetase (cPRS) gene that confer resistance to halofuginone. We describe here the evolutionary trajectory of halofuginone resistance of two independent drug resistance selections in Plasmodium falciparum. Using this novel methodology, we discover an unexpected non-genetic drug resistance mechanism that P. falciparum utilizes before genetic modification of the cPRS. P. falciparum first upregulates its proline amino acid homeostasis in response to halofuginone pressure. We show that this non-genetic adaptation to halofuginone is not likely mediated by differential RNA expression and precedes mutation or amplification of the cPRS gene. By tracking the evolution of the two drug resistance selections with whole genome sequencing, we further demonstrate that the cPRS locus accounts for the majority of genetic adaptation to halofuginone in P. falciparum. We further validate that copy-number variations at the cPRS locus also contribute to halofuginone resistance. Conclusions: We provide a three-step model for multi-locus evolution of halofuginone drug resistance in P. falciparum. Informed by genomic approaches, our results provide the first comprehensive view of the evolutionary trajectory malaria parasites take to achieve drug resistance. Our understanding of the multiple genetic and non-genetic mechanisms of drug resistance informs how we will design and pair future anti-malarials for clinical use. Electronic supplementary material The online version of this article (doi:10.1186/s13059-014-0511-2) contains supplementary material, which is available to authorized users.

  • Publication

    Patterns of Genomic Differentiation between Ecologically Differentiated M and S Forms of Anopheles gambiae in West and Central Africa

    (Oxford University Press, 2012) Reidenbach, Kyanne R.; Neafsey, Daniel; Costantini, Carlo; Sagnon, N’Fale; Simard, Frédéric; Ragland, Gregory J.; Egan, Scott P.; Feder, Jeffrey L.; Muskavitch, Marc; Besansky, Nora J.

    Anopheles gambiae M and S are thought to be undergoing ecological speciation by adapting to different larval habitats. Toward an improved understanding of the genetic determinants and evolutionary processes shaping their divergence, we used a 400,000 single-nucleotide polymorphism (SNP) genotyping array to characterize patterns of genomic differentiation between four geographically paired M and S population samples from West and Central Africa. In keeping with recent studies based on more limited genomic or geographic sampling, divergence was not confined to a few isolated “speciation islands.” Divergence was both widespread across the genome and heterogeneous. Moreover, we find consistent patterns of genomic divergence across sampling sites and mutually exclusive clustering of M and S populations using genetic distances based on all 400,000 SNPs, implying that M and S are evolving collectively across the study area. Nevertheless, the clustering of local M and S populations using genetic distances based on SNPs from genomic regions of low differentiation is consistent with recent gene flow and introgression. To account for these data and reconcile apparent paradoxes in reported patterns of M–S genomic divergence and hybridization, we propose that extrinsic ecologically based postmating barriers vary in strength as environmental conditions fluctuate or change.

  • Publication

    Sequence-Based Association and Selection Scans Identify Drug Resistance Loci in the Plasmodium Falciparum Malaria Parasite

    (Proceedings of the National Academy of Sciences, 2012) Park, Daniel John; Lukens, Amanda; Neafsey, Daniel; Schaffner, Stephen; Chang, Hsiao-Han; Valim, Clarissa; Ribacke, Ulf; Van tyne, Daria; Galinsky, Kevin; Galligan, Meghan; Becker, Justin S.; Ndiaye, Daouda; Mboup, Souleymane; Wiegand, Roger; Hartl, Daniel; Sabeti, Pardis; Wirth, Dyann; Volkman, Sarah

    Through rapid genetic adaptation and natural selection, the Plasmodium falciparum parasite—the deadliest of those that cause malaria—is able to develop resistance to antimalarial drugs, thwarting present efforts to control it. Genome-wide association studies (GWAS) provide a critical hypothesis-generating tool for understanding how this occurs. However, in P. falciparum, the limited amount of linkage disequilibrium hinders the power of traditional array-based GWAS. Here, we demonstrate the feasibility and power improvements gained by using whole-genome sequencing for association studies. We analyzed data from 45 Senegalese parasites and identified genetic changes associated with the parasites’ in vitro response to 12 different antimalarials. To further increase statistical power, we adapted a common test for natural selection, XP-EHH (cross-population extended haplotype homozygosity), and used it to identify genomic regions associated with resistance to drugs. Using this sequence-based approach and the combination of association and selection-based tests, we detected several loci associated with drug resistance. These loci included the previously known signals at pfcrt, dhfr, and pfmdr1, as well as many genes not previously implicated in drug-resistance roles, including genes in the ubiquitination pathway. Based on the success of the analysis presented in this study, and on the demonstrated shortcomings of array-based approaches, we argue for a complete transition to sequence-based GWAS for small, low linkage-disequilibrium genomes like that of P. falciparum.