Person: Murshid, Ayesha
Loading...
Email Address
AA Acceptance Date
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Murshid
First Name
Ayesha
Name
Murshid, Ayesha
11 results
Search Results
Now showing 1 - 10 of 11
Publication The Scavenger Receptor SREC-I Cooperates with Toll-Like Receptors to Trigger Inflammatory Innate Immune Responses(Frontiers Media S.A., 2016) Murshid, Ayesha; Borges, Thiago J.; Lang, Benjamin; Calderwood, StuartScavenger receptor expressed by endothelial cell-I (SREC-I) is a class F scavenger receptor expressed by immune cells with a significant role in CD8+- and CD4+-mediated T cell immunity. This receptor can also modulate the function of toll-like receptors (TLRs), which play essential roles in innate immunity. Earlier, it was found that human monocyte/macrophage THP1 cells and bone marrow-derived macrophages from mice exhibited increased responses to polyinosine–polycytidylic acid (poly I:C, PIC) and CpG (unmethylated) DNA and enhanced production of inflammatory cytokines with overexpressed SREC-I. Our data also showed that intracellular/endocytic TLR3 and TLR9 could directly interact with SREC-I in the presence of their respective ligands. We also observed that the internalized ligand along with TLR3/TLR9 colocalized in the endosome in macrophages and THP-1 cells overexpressing these receptors. In the absence of these ligands, there was no detectable colocalization between the SREC-I and endocytic TLRs. Earlier, it was shown that SREC-I stimulated double-stranded RNA/CpGDNA-mediated TLR3/TLR9 activation of the innate immune response by triggering signaling through the NF-κB, IRF3, and MAP kinase pathways leading to transcription of cytokine genes. We also established that SREC-I can associate with plasma membrane TLRs, such as TLR2 and TLR4. We demonstrated that SREC-I–TLR4 signals more efficiently from lipid microdomain in which lipopolysaccharide (LPS) can associate with SREC-I–TLR4 complex. We also proved that SREC-I is an alternate receptor for LPS capable of internalizing the complex and for endocytic TLR ligands as well. This binding activated endocytic TLR-mediated downstream cytokine production in THP1 cells and macrophages. Finally, SREC-I could also form complexes with TLR2 and induce the release of cytokines in the presence of bacterial, viral, and fungal ligands.Publication Transcriptional elongation requires DNA break-induced signalling(Nature Publishing Group, 2015) Bunch, Heeyoun; Lawney, Brian P.; Lin, Yu-Fen; Asaithamby, Aroumougame; Murshid, Ayesha; Wang, Yaoyu E.; Chen, Benjamin P. C.; Calderwood, StuartWe have previously shown that RNA polymerase II (Pol II) pause release and transcriptional elongation involve phosphorylation of the factor TRIM28 by the DNA damage response (DDR) kinases ATM and DNA-PK. Here we report a significant role for DNA breaks and DDR signalling in the mechanisms of transcriptional elongation in stimulus-inducible genes in humans. Our data show the enrichment of TRIM28 and γH2AX on serum-induced genes and the important function of DNA-PK for Pol II pause release and transcriptional activation-coupled DDR signalling on these genes. γH2AX accumulation decreases when P-TEFb is inhibited, confirming that DDR signalling results from transcriptional elongation. In addition, transcriptional elongation-coupled DDR signalling involves topoisomerase II because inhibiting this enzyme interferes with Pol II pause release and γH2AX accumulation. Our findings propose that DDR signalling is required for effective Pol II pause release and transcriptional elongation through a novel mechanism involving TRIM28, DNA-PK and topoisomerase II.Publication Molecular Chaperone Accumulation in Cancer and Decrease in Alzheimer's Disease: The Potential Roles of HSF1(Frontiers Media S.A., 2017) Calderwood, Stuart; Murshid, AyeshaMolecular chaperones are required to maintain the proteome in a folded and functional state. When challenges to intracellular folding occur, the heat shock response is triggered, leading to increased synthesis of a class of inducible chaperones known as heat shock proteins (HSP). Although HSP synthesis is known to undergo a general decline in most cells with aging, the extent of this process varies quite markedly in some of the diseases associated with advanced age. In Alzheimer's disease (AD), a prevalent protein folding disorder in the brain, the heat shock response of some critical classes of neurons becomes reduced. The resulting decline in HSP expression may be a consequence of the general enfeeblement of many aspects of cell physiology with aging and/or a response to the pathological changes in metabolism observed specifically in AD. Cancer cells, in contrast to normal aging cells, undergo de novo increases in HSP levels. This expansion in HSP expression has been attributed to increases in folding demand in cancer or to the evolution of new mechanisms for induction of the heat shock response in rapidly adapting cancer cells. As the predominant pathway for regulation of HSP synthesis involves transcription factor HSF1, it has been suggested that dysregulation of this factor may play a decisive role in the development of each disease. We will discuss what is known of the mechanisms of HSF1 regulation in regard to the HSP dysregulation seen in in AD and cancer.Publication HSF1 REGULATION OF β-CATENIN IN MAMMARY CANCER CELLS THROUGH CONTROL OF HUR / ELAVL1 EXPRESSION(2014) Chou, Shiuh-Dih; Murshid, Ayesha; Eguchi, Takanori; Gong, Jianlin; Calderwood, StuartThere is now compelling evidence to indicate a place for heat shock factor 1 (HSF1) in mammary carcinogenesis, tumor progression and metastasis. Here we have investigated a role for HSF1 in regulating the expression of the stem cell renewal factor β-catenin in immortalized human mammary epithelial and carcinoma cells. We found HSF1 to be involved in regulating the translation of β–catenin, by investigating effects of gain and loss of HSF1 on this protein. Interestingly, although HSF1 is a potent transcription factor, it was not directly involved in regulating levels of β-catenin mRNA. Instead, our data suggest a complex role in translational regulation. HSF1 was shown to regulate levels of the RNA binding protein HuR that controlled β-catenin translation. An extra complexity was added to this scenario when it was shown that the long non-coding RNA molecule lincRNA-p21, known to be involved in β-catenin mRNA (CTNNB1) translational regulation, was controlled by HSF1 repression. We have shown previously that HSF1 was positively regulated through phosphorylation by mTOR kinase on a key residue, serine 326 essential for transcriptional activity. In this study we found that mTOR knockdown not only decreased HSF1-S326 phosphorylation in mammary cells, but also decreased β-catenin expression through a mechanism requiring HuR. Our data point to a complex role for HSF1 in the regulation of HuR and β-catenin expression that may be significant in mammary carcinogenesis.Publication Extracellular HSPs: The Complicated Roles of Extracellular HSPs in Immunity(Frontiers Media S.A., 2016) Calderwood, Stuart; Gong, Jianlin; Murshid, AyeshaExtracellular heat-shock proteins (HSPs) interact with the immune system in a very complex manner. Many such HSPs exert powerful effects on the immune response, playing both stimulatory and regulatory roles. However, the influence of the HSPs on immunity appears to be positive or negative in nature – rarely neutral. Thus, the HSPs can act as dominant antigens and can comprise key components of antitumor vaccines. They can also function as powerful immunoregulatory agents and, as such, are employed to treat inflammatory diseases or to extend the lifespan of tissue transplants. Small modifications in the cellular milieu have been shown to flip the allegiances of HSPs from immunoregulatory agents toward a potent inflammatory alignment. These mutable properties of HSPs may be related to the ability of these proteins to interact with multiple receptors often with mutually confounding properties in immune cells. Therefore, understanding the complex immune properties of HSPs may help us to harness their potential in treatment of a range of conditions.Publication Editorial: HSPs—Ambiguous Mediators of Immunity(Frontiers Media S.A., 2016) Calderwood, Stuart; Murshid, Ayesha; Borges, Thiago J.Publication Scavenger Receptor SREC-I Mediated Entry of TLR4 into Lipid Microdomains and Triggered Inflammatory Cytokine Release in RAW 264.7 Cells upon LPS Activation(Public Library of Science, 2015) Murshid, Ayesha; Gong, Jianlin; Prince, Thomas; Borges, Thiago J.; Calderwood, StuartScavenger receptor associated with endothelial cells I (SREC-I) was shown to be expressed in immune cells and to play a role in the endocytosis of peptides and antigen presentation. As our previous studies indicated that SREC-I required intact Toll-like receptor 4 (TLR4) expression for its functions in tumor immunity, we examined potential interactions between these two receptors. We have shown here that SREC-I became associated with TLR4 on binding bacterial lipopolysaccharides (LPS) in RAW 264.7 and HEK 293 cells overexpressing these two receptors. The receptors then became internalized together in intracellular endosomes. SREC-I promoted TLR4-induced signal transduction through the NF-kB and MAP kinase pathways, leading to enhanced inflammatory cytokine release. Activation of inflammatory signaling through SREC-I/TLR4 complexes appeared to involve recruitment of the receptors into detergent-insoluble, cholesterol-rich lipid microdomains that contained the small GTPase Cdc42 and the non-receptor tyrosine kinase c-src. Under conditions of SREC-I activation by LPS, TLR4 activity required Cdc42 as well as cholesterol and actin polymerization for signaling through NF-kB and MAP kinase pathways in RAW 264.7 cells. SREC-I appeared to respond differently to another ligand, the molecular chaperone Hsp90 that, while triggering SREC-I-TLR4 binding caused only faint activation of the NF-kB pathway. Our experiments therefore indicated that SREC-I could bind LPS and might be involved in innate inflammatory immune responses to extracellular danger signals in RAW 264.7 cells or bone marrow-derived macrophages.Publication Heat Shock Proteins: Conditional Mediators of Inflammation in Tumor Immunity(Frontiers Research Foundation, 2012) Calderwood, Stuart; Murshid, Ayesha; Gong, JianlinHeat shock protein (HSP)-based anticancer vaccines have undergone successful preclinical testing and are now entering clinical trial. Questions still remain, however regarding the immunological properties of HSPs. It is now accepted that many of the HSPs participate in tumor immunity, at least in part by chaperoning tumor antigenic peptides, introducing them into antigen presenting cells such as dendritic cells (DC) that display the antigens on MHC class I molecules on the cell surface and stimulate cytotoxic lymphocytes (CTL). However, in order for activated CD8+ T cells to function as effective CTL and kill tumor cells, additional signals must be induced to obtain a sturdy CTL response. These include the expression of co-stimulatory molecules on the DC surface and inflammatory events that can induce immunogenic cytokine cascades. That such events occur is indicated by the ability of Hsp70 vaccines to induce antitumor immunity and overcome tolerance to tumor antigens such as mucin1. Secondary activation of CTL can be induced by inflammatory signaling through Toll-like receptors and/or by interaction of antigen-activated T helper cells with the APC. We will discuss the role of the inflammatory properties of HSPs in tumor immunity and the potential role of HSPs in activating T helper cells and DC licensing.Publication The Role of Heat Shock Proteins in Antigen Cross Presentation(Frontiers Research Foundation, 2012) Murshid, Ayesha; Gong, Jianlin; Calderwood, StuartHeat shock proteins (HSPs) are molecular chaperones that bind tumor antigens and mediate their uptake into antigen presenting cells. HSP–antigen complexes are then directed toward either the MHC class I pathway through antigen cross presentation or the conventional class II pathway, leading to activation of T cell subsets. Uptake of HSP-chaperoned polypeptides can involve both receptor-mediated and receptor-independent routes, and mechanisms of antigen sorting between the Class I and II pathways after uptake are currently under investigation. The processes involved in internalization of HSP–antigen complexes differ somewhat from the mechanisms previously determined for (unchaperoned) particulate and free soluble antigens. A number of studies show that HSP-facilitated antigen cross presentation requires uptake of the complexes by scavenger receptors (SR) followed by processing in the proteasome, and loading onto MHC class I molecules. In this review we have examined the roles of HSPs and SR in antigen uptake, sorting, processing, cell signaling, and activation of innate and adaptive immunity.Publication Heat Shock Proteins, Autoimmunity, and Cancer Treatment(Hindawi Publishing Corporation, 2012) Calderwood, Stuart; Stevenson, Mary; Murshid, AyeshaHeat shock proteins (HSPs) have been linked to the therapy of both cancer and inflammatory diseases, approaches that utilize contrasting immune properties of these proteins. It would appear that HSP family members Hsp60 and Hsp70, whether from external sources or induced locally during inflammation, can be processed by antigen-presenting cells and that HSP-derived epitopes then activate regulatory T cells and suppress inflammatory diseases. These effects also extend to the HSP-rich environments of cancer cells where elevated HSP concentrations may participate in the immunosuppressive tumor milieu. However, HSPs can also be important mediators of tumor immunity. Due to their molecular chaperone properties, some HSPs can bind tumor-specific peptides and deliver them deep into the antigen-processing pathways of antigen-presenting cells (APCs). In this context, HSP-based vaccines can activate tumor-specific immunity, trigger the proliferation and CTL capabilities of cancer-specific CD8+ T cells, and inhibit tumor growth. Further advances in HSP-based anticancer immunotherapy appear to involve improving the properties of the molecular chaperone vaccines by enhancing their antigen-binding properties and combating the immunosuppressive tumor milieu to permit programming of active CTL capable of penetrating the tumor milieu and specifically targeting tumor cells.