Person: Vijayan, Vikram
Loading...
Email Address
AA Acceptance Date
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Vijayan
First Name
Vikram
Name
Vijayan, Vikram
4 results
Search Results
Now showing 1 - 4 of 4
Publication Sequence Determinants of Circadian Gene Expression Phase in Cyanobacteria(American Society for Microbiology, 2012) Vijayan, Vikram; O'Shea, ErinThe cyanobacterium Synechococcus elongatus PCC 7942 exhibits global biphasic circadian oscillations in gene expression under constant-light conditions. Class I genes are maximally expressed in the subjective dusk, whereas class II genes are maximally expressed in the subjective dawn. Here, we identify sequence features that encode the phase of circadian gene expression. We find that, for multiple genes, an ∼70-nucleotide promoter fragment is sufficient to specify class I or II phase. We demonstrate that the gene expression phase can be changed by random mutagenesis and that a single-nucleotide substitution is sufficient to change the phase. Our study provides insight into how the gene expression phase is encoded in the cyanobacterial genome.Publication Oscillations in Supercoiling Drive Circadian Gene Expression in Cyanobacteria(National Academy of Sciences, 2009) Vijayan, Vikram; Zuzow, Rick; O'Shea, ErinThe cyanobacterium Synechococcus elongatus PCC 7942 exhibits oscillations in mRNA transcript abundance with 24-h periodicity under continuous light conditions. The mechanism underlying these oscillations remains elusive—neither cis nor trans-factors controlling circadian gene expression phase have been identified. Here, we show that the topological status of the chromosome is highly correlated with circadian gene expression state. We also demonstrate that DNA sequence characteristics of genes that appear monotonically activated and monotonically repressed by chromosomal relaxation during the circadian cycle are similar to those of supercoiling-responsive genes in Escherichia coli. Furthermore, perturbation of superhelical status within the physiological range elicits global changes in gene expression similar to those that occur during the normal circadian cycle.Publication A High Resolution Map of a Cyanobacterial Transcriptome(BioMed Central, 2012) Vijayan, Vikram; Jain, Isha; O'Shea, ErinBackground: Previous molecular and mechanistic studies have identified several principles of prokaryotic transcription, but less is known about the global transcriptional architecture of bacterial genomes. Here we perform a comprehensive study of a cyanobacterial transcriptome, that of Synechococcus elongatus PCC 7942, generated by combining three high-resolution data sets: RNA sequencing, tiling expression microarrays, and RNA polymerase chromatin immunoprecipitation sequencing. Results: We report absolute transcript levels, operon identification, and high-resolution mapping of 5' and 3' ends of transcripts. We identify several interesting features at promoters, within transcripts and in terminators relating to transcription initiation, elongation, and termination. Furthermore, we identify many putative non-coding transcripts. Conclusions: We provide a global analysis of a cyanobacterial transcriptome. Our results uncover insights that reinforce and extend the current views of bacterial transcription.Publication Circadian Gene Expression in Cyanobacteria(2013-03-18) Vijayan, Vikram; O'Shea, Erin K; Losick, Richard; Murray, Andrew; Regev, Aviv; Denic, Vladimir; Cluzel, Philippe; Springer, Michael; Garner, EthanCyanobacteria are photosynthetic prokaryotes that live in aquatic environments. The cyanobacterium Synechococcus elongatus PCC 7942, (hereafter S. elongatus) coordinates its day and night behaviors via a circadian clock. The clock is entrained by light/dark cycles but continues to run in constant light conditions. The core circadian clock in S. elongatus is encoded by post-translational modifications of three Kai proteins, but the extent and mechanism of circadian gene expression are unknown. We provide the first unbiased characterization of circadian gene expression in S. elongatus, demonstrating that \(\sim 65\%\) of genes display oscillation in continuous light conditions, with some genes peaking in expression at subjective dawn and others at subjective dusk. We next sought to identify the mechanism by which such a large fraction of the genome could be rhythmically controlled. Through bioinformatic, correlative, and perturbation experiments, we find that circadian changes in chromosome topology/supercoiling are sufficient to drive rhythmic expression (Chapter 2). To further investigate how chromosome topology can control gene expression we performed a high resolution characterization of transcripts and RNA polymerase across the S. elongatus genome (Chapter 3). Bioinformatic analysis of transcription start sites suggests that the AT/GC content a particular region of the promoter is informative in defining the phase at which a transcript is maximally expressed. We find that these sequences are sufficient to drive circadian gene expression at a particular phase and that mutation of single nucleotides in this region can reverse the expression phase of a transcript (Chapter 4). To understand the role of chromosome dynamics in circadian gene expression and cyanobacterial physiology, we tagged and followed chromosomes over multiple cell divisions. We find that S. elongatus cells harbor multiple ordered copies of a single chromosome, and the organization of chromosomes in the cytoplasm facilitates equal segregation of chromosomes to daughter cells (Chapter 5).