Person:
Furie, Bruce

Loading...
Profile Picture

Email Address

AA Acceptance Date

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Furie

First Name

Bruce

Name

Furie, Bruce

Search Results

Now showing 1 - 8 of 8
  • Publication
    Whole-genome sequencing of patients with rare diseases in a national health system
    (Springer Science and Business Media LLC, 2020-06-24) Schulman, Sol; Furie, Bruce
    The NIHR BioResource, for the 100,000 Genomes Project* *A list of the authors and their affiliations appears at the end of the manuscript and a list of the collaborators and their affiliations appears at the end of the Supplementary Information. ________________________________________ Most patients with rare diseases do not receive a molecular diagnosis and the aetiological variants and mediating genes for more than half such disorders remain to be discovered1. We implemented whole-genome sequencing (WGS) in a national health system to streamline diagnosis and to discover unknown aetiological variants, in the coding and non-coding regions of the genome. In a pilot study for the 100,000 Genomes Project, we generated WGS data for 13,037 participants, of whom 9,802 had a rare disease, and provided a genetic diagnosis to 1,138 of the 7,065 patients with detailed phenotypic data. We identified 95 Mendelian associations between genes and rare diseases, of which 11 have been discovered since 2015 and at least 79 are confirmed aetiological. Using WGS of UK Biobank2, we showed that rare alleles can explain the presence of some individuals in the tails of a quantitative red blood cell (RBC) trait. Finally, we identified 4 novel non-coding variants which cause disease through the disruption of transcription of ARPC1B, GATA1, LRBA and MPL. Our study demonstrates a synergy by using WGS for diagnosis and aetiological discovery in routine healthcare.
  • Thumbnail Image
    Publication
    Compounds targeting disulfide bond forming enzyme DsbB of Gram-negative bacteria
    (2015) Landeta, Cristina; Blazyk, Jessica L.; Hatahet, Feras; Meehan, Brian M.; Eser, Markus; Myrick, Alissa; Bronstain, Ludmila; Wakabayashi, Shoko; Arnold, Holly; Ke, Na; Rubin, Eric; Furie, Barbara; Furie, Bruce; Beckwith, Jon; Dutton, Rachel; Boyd, Dana
    In bacteria, disulfide bonds confer stability on many proteins exported to the cell envelope or beyond. These proteins include numerous bacterial virulence factors. Thus, bacterial enzymes that promote disulfide bond formation represent targets for compounds inhibiting bacterial virulence. Here, we describe a novel target- and cell-based screening methodology for identifying compounds that inhibit the disulfide bond-forming enzymes E. coli DsbB (EcDsbB) or M. tuberculosis VKOR (MtbVKOR). MtbVKOR can replace EcDsbB although the two are not homologues. Initial screening of 51,487 compounds yielded six specifically inhibiting EcDsbB. These compounds share a structural motif and do not inhibit MtbVKOR. A medicinal chemistry approach led us to select related compounds some of which are much more effective DsbB inhibitors than those found in the screen. These compounds inhibit purified DsbB and prevent anaerobic E. coli growth. Furthermore, these compounds inhibit all but one of the DsbBs of nine other gram-negative pathogenic bacteria tested.
  • Thumbnail Image
    Publication
    Telomerecat: A ploidy-agnostic method for estimating telomere length from whole genome sequencing data
    (Nature Publishing Group UK, 2018) Farmery, James H. R.; Smith, Mike L.; Huissoon, Aarnoud; Furnell, Abigail; Mead, Adam; Levine, Adam P.; Manzur, Adnan; Thrasher, Adrian; Greenhalgh, Alan; Parker, Alasdair; Sanchis-Juan, Alba; Richter, Alex; Gardham, Alice; Lawrie, Allan; Sohal, Aman; Creaser-Myers, Amanda; Frary, Amy; Greinacher, Andreas; Themistocleous, Andreas; Peacock, Andrew J.; Marshall, Andrew; Mumford, Andrew; Rice, Andrew; Webster, Andrew; Brady, Angie; Koziell, Ania; Manson, Ania; Chandra, Anita; Hensiek, Anke; Veld, Anna Huis in’t; Maw, Anna; Kelly, Anne M.; Moore, Anthony; Vonk Noordegraaf, Anton; Attwood, Antony; Herwadkar, Archana; Ghofrani, Ardi; Houweling, Arjan C.; Girerd, Barbara; Furie, Bruce; Treacy, Carmen M.; Millar, Carolyn M.; Sewell, Carrock; Roughley, Catherine; Titterton, Catherine; Williamson, Catherine; Hadinnapola, Charaka; Deshpande, Charu; Toh, Cheng-Hock; Bacchelli, Chiara; Patch, Chris; Geet, Chris Van; Babbs, Christian; Bryson, Christine; Penkett, Christopher J.; Rhodes, Christopher J.; Watt, Christopher; Bethune, Claire; Booth, Claire; Lentaigne, Claire; McJannet, Coleen; Church, Colin; French, Courtney; Samarghitean, Crina; Halmagyi, Csaba; Gale, Daniel; Greene, Daniel; Hart, Daniel; Allsup, David; Bennett, David; Edgar, David; Kiely, David G.; Gosal, David; Perry, David J.; Keeling, David; Montani, David; Shipley, Debbie; Whitehorn, Deborah; Fletcher, Debra; Krishnakumar, Deepa; Grozeva, Detelina; Kumararatne, Dinakantha; Thompson, Dorothy; Josifova, Dragana; Maher, Eamonn; Wong, Edwin K. S.; Murphy, Elaine; Dewhurst, Eleanor; Louka, Eleni; Rosser, Elisabeth; Chalmers, Elizabeth; Colby, Elizabeth; Drewe, Elizabeth; McDermott, Elizabeth; Thomas, Ellen; Staples, Emily; Clement, Emma; Matthews, Emma; Wakeling, Emma; Oksenhendler, Eric; Turro, Ernest; Reid, Evan; Wassmer, Evangeline; Raymond, F. Lucy; Hu, Fengyuan; Kennedy, Fiona; Soubrier, Florent; Flinter, Frances; Kovacs, Gabor; Polwarth, Gary; Ambegaonkar, Gautum; Arno, Gavin; Hudson, Gavin; Woods, Geoff; Coghlan, Gerry; Hayman, Grant; Arumugakani, Gururaj; Schotte, Gwen; Cook, H. Terry; Alachkar, Hana; Lango Allen, Hana; Lango-Allen, Hana; Stark, Hannah; Stauss, Hans; Schulze, Harald; Boggard, Harm J.; Baxendale, Helen; Dolling, Helen; Firth, Helen; Gall, Henning; Watson, Henry; Longhurst, Hilary; Markus, Hugh S.; Watkins, Hugh; Simeoni, Ilenia; Emmerson, Ingrid; Roberts, Irene; Quinti, Isabella; Wanjiku, Ivy; Gibbs, J. Simon R.; Thaventhiran, James; Whitworth, James; Hurst, Jane; Collins, Janine; Suntharalingam, Jay; Payne, Jeanette; Thachil, Jecko; Martin, Jennifer M.; Martin, Jennifer; Carmichael, Jenny; Maimaris, Jesmeen; Paterson, Joan; Pepke-Zaba, Joanna; Heemskerk, Johan W. M.; Gebhart, Johanna; Davis, John; Pasi, John; Bradley, John R.; Wharton, John; Stephens, Jonathan; Rankin, Julia; Anderson, Julie; Vogt, Julie; von Ziegenweldt, Julie; Rehnstrom, Karola; Megy, Karyn; Talks, Kate; Peerlinck, Kathelijne; Yates, Katherine; Freson, Kathleen; Stirrups, Kathleen; Gomez, Keith; Smith, Kenneth G. C.; Carss, Keren; Rue-Albrecht, Kevin; Gilmour, Kimberley; Masati, Larahmie; Scelsi, Laura; Southgate, Laura; Ranganathan, Lavanya; Ginsberg, Lionel; Devlin, Lisa; Willcocks, Lisa; Ormondroyd, Liz; Lorenzo, Lorena; Harper, Lorraine; Allen, Louise; Daugherty, Louise; Chitre, Manali; Kurian, Manju; Humbert, Marc; Tischkowitz, Marc; Bitner-Glindzicz, Maria; Erwood, Marie; Scully, Marie; Veltman, Marijke; Caulfield, Mark; Layton, Mark; McCarthy, Mark; Ponsford, Mark; Toshner, Mark; Bleda, Marta; Wilkins, Martin; Mathias, Mary; Reilly, Mary; Afzal, Maryam; Brown, Matthew; Rondina, Matthew; Stubbs, Matthew; Haimel, Matthias; Lees, Melissa; Laffan, Michael A.; Browning, Michael; Gattens, Michael; Richards, Michael; Michaelides, Michel; Lambert, Michele P.; Makris, Mike; De Vries, Minka; Mahdi-Rogers, Mohamed; Saleem, Moin; Thomas, Moira; Holder, Muriel; Eyries, Mélanie; Clements-Brod, Naomi; Canham, Natalie; Dormand, Natalie; Zuydam, Natalie Van; Kingston, Nathalie; Ghali, Neeti; Cooper, Nichola; Morrell, Nicholas W.; Yeatman, Nigel; Roy, Noémi; Shamardina, Olga; Alavijeh, Omid S.; Gresele, Paolo; Nurden, Paquita; Chinnery, Patrick; Deegan, Patrick; Yong, Patrick; Man, Patrick Yu Wai; Corris, Paul A.; Calleja, Paul; Gissen, Paul; Bolton-Maggs, Paula; Rayner-Matthews, Paula; Ghataorhe, Pavandeep K.; Gordins, Pavel; Stein, Penelope; Collins, Peter; Dixon, Peter; Kelleher, Peter; Ancliff, Phil; Yu, Ping; Tait, R. Campbell; Linger, Rachel; Doffinger, Rainer; Machado, Rajiv; Kazmi, Rashid; Sargur, Ravishankar; Favier, Remi; Tan, Rhea; Liesner, Ri; Antrobus, Richard; Sandford, Richard; Scott, Richard; Trembath, Richard; Horvath, Rita; Hadden, Rob; MackenzieRoss, Rob V.; Henderson, Robert; MacLaren, Robert; James, Roger; Ghurye, Rohit; DaCosta, Rosa; Hague, Rosie; Mapeta, Rutendo; Armstrong, Ruth; Noorani, Sadia; Murng, Sai; Santra, Saikat; Tuna, Salih; Johnson, Sally; Chong, Sam; Lear, Sara; Walker, Sara; Goddard, Sarah; Mangles, Sarah; Westbury, Sarah; Mehta, Sarju; Hackett, Scott; Nejentsev, Sergey; Moledina, Shahin; Bibi, Shahnaz; Meehan, Sharon; Othman, Shokri; Revel-Vilk, Shoshana; Holden, Simon; McGowan, Simon; Staines, Simon; Savic, Sinisa; Burns, Siobhan; Grigoriadou, Sofia; Papadia, Sofia; Ashford, Sofie; Schulman, Sol; Ali, Sonia; Park, Soo-Mi; Davies, Sophie; Stock, Sophie; Ali, Souad; Deevi, Sri V. V.; Gräf, Stefan; Ghio, Stefano; Wort, Stephen J.; Jolles, Stephen; Austin, Steve; Welch, Steve; Meacham, Stuart; Rankin, Stuart; Walker, Suellen; Seneviratne, Suranjith; Holder, Susan; Sivapalaratnam, Suthesh; Richardson, Sylvia; Kuijpers, Taco; Kuijpers, Taco W.; Bariana, Tadbir K.; Bakchoul, Tamam; Everington, Tamara; Renton, Tara; Young, Tim; Aitman, Timothy; Warner, Timothy Q.; Vale, Tom; Hammerton, Tracey; Pollock, Val; Matser, Vera; Cookson, Victoria; Clowes, Virginia; Qasim, Waseem; Wei, Wei; Erber, Wendy N.; Ouwehand, Willem H.; Astle, William; Egner, William; Turek, Wojciech; Henskens, Yvonne; Tan, Yvonne; Lynch, Andy G.
    Telomere length is a risk factor in disease and the dynamics of telomere length are crucial to our understanding of cell replication and vitality. The proliferation of whole genome sequencing represents an unprecedented opportunity to glean new insights into telomere biology on a previously unimaginable scale. To this end, a number of approaches for estimating telomere length from whole-genome sequencing data have been proposed. Here we present Telomerecat, a novel approach to the estimation of telomere length. Previous methods have been dependent on the number of telomeres present in a cell being known, which may be problematic when analysing aneuploid cancer data and non-human samples. Telomerecat is designed to be agnostic to the number of telomeres present, making it suited for the purpose of estimating telomere length in cancer studies. Telomerecat also accounts for interstitial telomeric reads and presents a novel approach to dealing with sequencing errors. We show that Telomerecat performs well at telomere length estimation when compared to leading experimental and computational methods. Furthermore, we show that it detects expected patterns in longitudinal data, repeated measurements, and cross-species comparisons. We also apply the method to a cancer cell data, uncovering an interesting relationship with the underlying telomerase genotype.
  • Thumbnail Image
    Publication
    Microparticles and a P-Selectin-Mediated Pathway of Blood Coagulation
    (IOS Press, 2004) Celi, Alessandro; Lorenzet, Roberto; Furie, Barbara; Furie, Bruce
  • Thumbnail Image
    Publication
    Human phenotype ontology annotation and cluster analysis to unravel genetic defects in 707 cases with unexplained bleeding and platelet disorders
    (BioMed Central, 2015) Westbury, Sarah K; Turro, Ernest; Greene, Daniel; Lentaigne, Claire; Kelly, Anne M; Bariana, Tadbir K; Simeoni, Ilenia; Pillois, Xavier; Attwood, Antony; Austin, Steve; Jansen, Sjoert BG; Bakchoul, Tamam; Crisp-Hihn, Abi; Erber, Wendy N; Favier, Rémi; Foad, Nicola; Gattens, Michael; Jolley, Jennifer D; Liesner, Ri; Meacham, Stuart; Millar, Carolyn M; Nurden, Alan T; Peerlinck, Kathelijne; Perry, David J; Poudel, Pawan; Schulman, Sol; Schulze, Harald; Stephens, Jonathan C; Furie, Bruce; Robinson, Peter N; van Geet, Chris; Rendon, Augusto; Gomez, Keith; Laffan, Michael A; Lambert, Michele P; Nurden, Paquita; Ouwehand, Willem H; Richardson, Sylvia; Mumford, Andrew D; Freson, Kathleen
    Background: Heritable bleeding and platelet disorders (BPD) are heterogeneous and frequently have an unknown genetic basis. The BRIDGE-BPD study aims to discover new causal genes for BPD by high throughput sequencing using cluster analyses based on improved and standardised deep, multi-system phenotyping of cases. Methods: We report a new approach in which the clinical and laboratory characteristics of BPD cases are annotated with adapted Human Phenotype Ontology (HPO) terms. Cluster analyses are then used to characterise groups of cases with similar HPO terms and variants in the same genes. Results: We show that 60% of index cases with heritable BPD enrolled at 10 European or US centres were annotated with HPO terms indicating abnormalities in organ systems other than blood or blood-forming tissues, particularly the nervous system. Cases within pedigrees clustered closely together on the bases of their HPO-coded phenotypes, as did cases sharing several clinically suspected syndromic disorders. Cases subsequently found to harbour variants in ACTN1 also clustered closely, even though diagnosis of this recently described disorder was not possible using only the clinical and laboratory data available to the enrolling clinician. Conclusions: These findings validate our novel HPO-based phenotype clustering methodology for known BPD, thus providing a new discovery tool for BPD of unknown genetic basis. This approach will also be relevant for other rare diseases with significant genetic heterogeneity. Electronic supplementary material The online version of this article (doi:10.1186/s13073-015-0151-5) contains supplementary material, which is available to authorized users.
  • Thumbnail Image
    Publication
    Protein disulfide isomerase secretion following vascular injury initiates a regulatory pathway for thrombus formation
    (Nature Publishing Group, 2017) Bowley, Sheryl R.; Fang, Chao; Merrill-Skoloff, Glenn; Furie, Barbara; Furie, Bruce
    Protein disulfide isomerase (PDI), secreted by platelets and endothelial cells on vascular injury, is required for thrombus formation. Using PDI variants that form mixed disulfide complexes with their substrates, we identify by kinetic trapping multiple substrate proteins, including vitronectin. Plasma vitronectin does not bind to αvβ3 or αIIbβ3 integrins on endothelial cells and platelets. The released PDI reduces disulfide bonds on plasma vitronectin, enabling vitronectin to bind to αVβ3 and αIIbβ3. In vivo studies of thrombus generation in mice demonstrate that vitronectin rapidly accumulates on the endothelium and the platelet thrombus following injury. This process requires PDI activity and promotes platelet accumulation and fibrin generation. We hypothesize that under physiologic conditions in the absence of secreted PDI, thrombus formation is suppressed and maintains a quiescent, patent vasculature. The release of PDI during vascular injury may serve as a regulatory switch that allows activation of proteins, among them vitronectin, critical for thrombus formation.
  • Thumbnail Image
    Publication
    A specific plasminogen activator inhibitor‐1 antagonist derived from inactivated urokinase
    (John Wiley and Sons Inc., 2016) Gong, Lihu; Proulle, Valerie; Fang, Chao; Hong, Zebin; Lin, Zhonghui; Liu, Min; Xue, Guangpu; Yuan, Cai; Lin, Lin; Furie, Barbara; Flaumenhaft, Robert; Andreasen, Peter; Furie, Bruce; Huang, Mingdong
    Abstract Fibrinolysis is a process responsible for the dissolution of formed thrombi to re‐establish blood flow after thrombus formation. Plasminogen activator inhibitor‐1 (PAI‐1) inhibits urokinase‐type and tissue‐type plasminogen activator (uPA and tPA) and is the major negative regulator of fibrinolysis. Inhibition of PAI‐1 activity prevents thrombosis and accelerates fibrinolysis. However, a specific antagonist of PAI‐1 is currently unavailable for therapeutic use. We screened a panel of uPA variants with mutations at and near the active site to maximize their binding to PAI‐1 and identified a potent PAI‐1 antagonist, PAItrap. PAItrap is the serine protease domain of urokinase containing active‐site mutation (S195A) and four additional mutations (G37bR–R217L–C122A–N145Q). PAItrap inhibits human recombinant PAI‐1 with high potency (K d = 0.15 nM) and high specificity. In vitro using human plasma, PAItrap showed significant thrombolytic activity by inhibiting endogenous PAI‐1. In addition, PAItrap inhibits both human and murine PAI‐1, allowing the evaluation in murine models. In vivo, using a laser‐induced thrombosis mouse model in which thrombus formation and fibrinolysis are monitored by intravital microscopy, PAItrap reduced fibrin generation and inhibited platelet accumulation following vascular injury. Therefore, this work demonstrates the feasibility to generate PAI‐1 inhibitors using inactivated urokinase.
  • Thumbnail Image
    Publication
    A substrate-driven allosteric switch that enhances PDI catalytic activity
    (Nature Publishing Group, 2016) Bekendam, Roelof H.; Bendapudi, Pavan; Lin, Lin; Nag, Partha P.; Pu, Jun; Kennedy, Daniel R.; Feldenzer, Alexandra; Chiu, Joyce; Cook, Kristina M.; Furie, Bruce; Huang, Mingdong; Hogg, Philip J.; Flaumenhaft, Robert
    Protein disulfide isomerase (PDI) is an oxidoreductase essential for folding proteins in the endoplasmic reticulum. The domain structure of PDI is a–b–b′–x–a′, wherein the thioredoxin-like a and a′ domains mediate disulfide bond shuffling and b and b′ domains are substrate binding. The b′ and a′ domains are connected via the x-linker, a 19-amino-acid flexible peptide. Here we identify a class of compounds, termed bepristats, that target the substrate-binding pocket of b′. Bepristats reversibly block substrate binding and inhibit platelet aggregation and thrombus formation in vivo. Ligation of the substrate-binding pocket by bepristats paradoxically enhances catalytic activity of a and a′ by displacing the x-linker, which acts as an allosteric switch to augment reductase activity in the catalytic domains. This substrate-driven allosteric switch is also activated by peptides and proteins and is present in other thiol isomerases. Our results demonstrate a mechanism whereby binding of a substrate to thiol isomerases enhances catalytic activity of remote domains.