Person: Niepel, Mario
Loading...
Email Address
AA Acceptance Date
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Niepel
First Name
Mario
Name
Niepel, Mario
5 results
Search Results
Now showing 1 - 5 of 5
Publication LINCS Canvas Browser: interactive web app to query, browse and interrogate LINCS L1000 gene expression signatures(Oxford University Press, 2014) Duan, Qiaonan; Flynn, Corey; Niepel, Mario; Hafner, Marc; Muhlich, Jeremy; Fernandez, Nicolas F.; Rouillard, Andrew D.; Tan, Christopher M.; Chen, Edward Y.; Golub, Todd R.; Sorger, Peter; Subramanian, Aravind; Ma'ayan, AviFor the Library of Integrated Network-based Cellular Signatures (LINCS) project many gene expression signatures using the L1000 technology have been produced. The L1000 technology is a cost-effective method to profile gene expression in large scale. LINCS Canvas Browser (LCB) is an interactive HTML5 web-based software application that facilitates querying, browsing and interrogating many of the currently available LINCS L1000 data. LCB implements two compacted layered canvases, one to visualize clustered L1000 expression data, and the other to display enrichment analysis results using 30 different gene set libraries. Clicking on an experimental condition highlights gene-sets enriched for the differentially expressed genes from the selected experiment. A search interface allows users to input gene lists and query them against over 100 000 conditions to find the top matching experiments. The tool integrates many resources for an unprecedented potential for new discoveries in systems biology and systems pharmacology. The LCB application is available at http://www.maayanlab.net/LINCS/LCB. Customized versions will be made part of the http://lincscloud.org and http://lincs.hms.harvard.edu websites.Publication Growth rate inhibition metrics correct for confounders in measuring sensitivity to cancer drugs(2016) Hafner, Marc; Niepel, Mario; Chung, Mirra; Sorger, PeterDrug sensitivity and resistance are conventionally quantified by IC50 or Emax values, but these metrics are highly sensitive to the number of divisions taking place over the course of a response assay. The dependency of IC50 and Emax on division rate creates artefactual correlations between genotype and drug sensitivity while obscuring valuable biological insights and interfering with biomarker discovery. We derive alternative drug response metrics that are insensitive to division number. These are based on estimating the magnitude of drug-induced growth rate inhibition (GR) using endpoint or time-course assays. We show that GR50 and GRmax are superior to conventional metrics for assessing the effects of drugs in dividing cells. Moreover, adopting GR metrics requires only modest changes in experimental protocols. We expect GR metrics to improve the study of cell signaling and growth using drugs, discovery of drug response biomarkers, and identification of drugs effective on specific patient-derived tumor cells.Publication Analysis of growth factor signaling in genetically diverse breast cancer lines(BioMed Central, 2014) Niepel, Mario; Hafner, Marc; Pace, Emily A; Chung, Mirra; Chai, Diana H; Zhou, Lili; Muhlich, Jeremy; Schoeberl, Birgit; Sorger, PeterBackground: Soluble growth factors present in the microenvironment play a major role in tumor development, invasion, metastasis, and responsiveness to targeted therapies. While the biochemistry of growth factor-dependent signal transduction has been studied extensively in individual cell types, relatively little systematic data are available across genetically diverse cell lines. Results: We describe a quantitative and comparative dataset focused on immediate-early signaling that regulates the AKT (AKT1/2/3) and ERK (MAPK1/3) pathways in a canonical panel of well-characterized breast cancer lines. We also provide interactive web-based tools to facilitate follow-on analysis of the data. Our findings show that breast cancers are diverse with respect to ligand sensitivity and signaling biochemistry. Surprisingly, triple negative breast cancers (TNBCs; which express low levels of ErbB2, progesterone and estrogen receptors) are the most broadly responsive to growth factors and HER2amp cancers (which overexpress ErbB2) the least. The ratio of ERK to AKT activation varies with ligand and subtype, with a systematic bias in favor of ERK in hormone receptor positive (HR+) cells. The factors that correlate with growth factor responsiveness depend on whether fold-change or absolute activity is considered the key biological variable, and they differ between ERK and AKT pathways. Conclusions: Responses to growth factors are highly diverse across breast cancer cell lines, even within the same subtype. A simple four-part heuristic suggests that diversity arises from variation in receptor abundance, an ERK/AKT bias that depends on ligand identity, a set of factors common to all receptors that varies in abundance or activity with cell line, and an “indirect negative regulation” by ErbB2. This analysis sets the stage for the development of a mechanistic and predictive model of growth factor signaling in diverse cancer lines. Interactive tools for looking up these results and downloading raw data are available at http://lincs.hms.harvard.edu/niepel-bmcbiol-2014/.Publication Systematic analysis of BRAFV600E melanomas reveals a role for JNK/c-Jun pathway in adaptive resistance to drug-induced apoptosis(BlackWell Publishing Ltd, 2015) Fallahi-Sichani, Mohammad; Moerke, Nathan J; Niepel, Mario; Zhang, Tinghu; Gray, Nathanael; Sorger, PeterDrugs that inhibit RAF/MEK signaling, such as vemurafenib, elicit profound but often temporary anti-tumor responses in patients with BRAFV600E melanoma. Adaptive responses to RAF/MEK inhibition occur on a timescale of hours to days, involve homeostatic responses that reactivate MAP kinase signaling and compensatory mitogenic pathways, and attenuate the anti-tumor effects of RAF/MEK inhibitors. We profile adaptive responses across a panel of melanoma cell lines using multiplex biochemical measurement, single-cell assays, and statistical modeling and show that adaptation involves at least six signaling cascades that act to reduce drug potency (IC50) and maximal effect (i.e., Emax ≪ 1). Among these cascades, we identify a role for JNK/c-Jun signaling in vemurafenib adaptation and show that RAF and JNK inhibitors synergize in cell killing. This arises because JNK inhibition prevents a subset of cells in a cycling population from becoming quiescent upon vemurafenib treatment, thereby reducing drug Emax. Our findings demonstrate the breadth and diversity of adaptive responses to RAF/MEK inhibition and a means to identify which steps in a signaling cascade are most predictive of phenotypic response.Publication Input–Output Behavior of ErbB Signaling Pathways as Revealed by a Mass Action Model Trained against Dynamic Data(Nature Publishing Group, 2009) Chen, William Wei-Lun; Schoeberl, Birgit; Jasper, Paul J; Niepel, Mario; Nielsen, Ulrik B; Lauffenburger, Douglas A; Sorger, PeterThe ErbB signaling pathways, which regulate diverse physiological responses such as cell survival, proliferation and motility, have been subjected to extensive molecular analysis. Nonetheless, it remains poorly understood how different ligands induce different responses and how this is affected by oncogenic mutations. To quantify signal flow through ErbB-activated pathways we have constructed, trained and analyzed a mass action model of immediate-early signaling involving ErbB1–4 receptors (EGFR, HER2/Neu2, ErbB3 and ErbB4), and the MAPK and PI3K/Akt cascades. We find that parameter sensitivity is strongly dependent on the feature (e.g. ERK or Akt activation) or condition (e.g. EGF or heregulin stimulation) under examination and that this context dependence is informative with respect to mechanisms of signal propagation. Modeling predicts log-linear amplification so that significant ERK and Akt activation is observed at ligand concentrations far below the \(K_d\) for receptor binding. However, MAPK and Akt modules isolated from the ErbB model continue to exhibit switch-like responses. Thus, key system-wide features of ErbB signaling arise from nonlinear interaction among signaling elements, the properties of which appear quite different in context and in isolation.