Person: Mahmoudi, Morteza
Loading...
Email Address
AA Acceptance Date
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Mahmoudi
First Name
Morteza
Name
Mahmoudi, Morteza
Search Results
Now showing 1 - 2 of 2
Publication Mechanistic understanding of in vivo protein corona formation on polymeric nanoparticles and impact on pharmacokinetics(Nature Publishing Group UK, 2017) Bertrand, Nicolas; Grenier, Philippe; Mahmoudi, Morteza; Lima, Eliana M.; Appel, Eric A.; Dormont, Flavio; Lim, Jong-Min; Karnik, Rohit; Langer, Robert; Farokhzad, OmidIn vitro incubation of nanomaterials with plasma offer insights on biological interactions, but cannot fully explain the in vivo fate of nanomaterials. Here, we use a library of polymer nanoparticles to show how physicochemical characteristics influence blood circulation and early distribution. For particles with different diameters, surface hydrophilicity appears to mediate early clearance. Densities above a critical value of approximately 20 poly(ethylene glycol) chains (MW 5 kDa) per 100 nm2 prolong circulation times, irrespective of size. In knockout mice, clearance mechanisms are identified for nanoparticles with low and high steric protection. Studies in animals deficient in the C3 protein showed that complement activation could not explain differences in the clearance of nanoparticles. In nanoparticles with low poly(ethylene glycol) coverage, adsorption of apolipoproteins can prolong circulation times. In parallel, the low-density-lipoprotein receptor plays a predominant role in the clearance of nanoparticles, irrespective of poly(ethylene glycol) density. These results further our understanding of nanopharmacology.Publication Time-Resolved Visual Chiral Discrimination of Cysteine Using Unmodified CdTe Quantum Dots(Nature Publishing Group UK, 2017) Ghasemi, Forough; Hormozi-Nezhad, M. Reza; Mahmoudi, MortezaHerein, we demonstrate a simple yet novel luminescence assay for visual chiral discrimination of cysteine. Thioglycolic acid (TGA)-capped cadmium-telluride (CdTe) quantum dots (QDs) exposing green emission were directly synthesized in aqueous solution. The interaction between cysteine molecules and CdTe QDs induced the aggregation of QDs via hydrogen bonding. As a result of electronic coupling within these aggregates, a redshift both in the absorption and emission spectra of QDs occured. The difference in the kinetics of the interactions between L- and D-cysteine with CdTe QDs led to chiral recognition of these enantiomers. Addition of D-cysteine to CdTe QDs in a basic media caused a green-to-yellow color change, while no color alteration in QDs emission was observed in the presence of L-cysteine after 2 hours. Notably, the QDs used in the proposed assay are free from any labling/modification, which makes the present strategy highly attractive for sensing applications. Furthermore, the presented chiral assay is able to determine the enantiomeric excess (ee) of D-cysteine in the whole range of ee values (from −100% to 100%).