Person: Tu, Duong
Loading...
Email Address
AA Acceptance Date
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Tu
First Name
Duong
Name
Tu, Duong
3 results
Search Results
Now showing 1 - 3 of 3
Publication Acellular Bi-Layer Silk Fibroin Scaffolds Support Tissue Regeneration in a Rabbit Model of Onlay Urethroplasty(Public Library of Science, 2014) Chung, Yeun Goo; Tu, Duong; Franck, Debra; Gil, Eun Seok; Algarrahi, Khalid; Adam, Rosalyn; Kaplan, David L.; Estrada Jr., Carlos R.; Mauney, JoshuaAcellular scaffolds derived from Bombyx mori silk fibroin were investigated for their ability to support functional tissue regeneration in a rabbit model of urethra repair. A bi-layer silk fibroin matrix was fabricated by a solvent-casting/salt leaching process in combination with silk fibroin film casting to generate porous foams buttressed by homogeneous silk fibroin films. Ventral onlay urethroplasty was performed with silk fibroin grafts (Group 1, N = 4) (Width×Length, 1×2 cm2) in adult male rabbits for 3 m of implantation. Parallel control groups consisted of animals receiving small intestinal submucosa (SIS) implants (Group 2, N = 4) or urethrotomy alone (Group 3, N = 3). Animals in all groups exhibited 100% survival prior to scheduled euthanasia and achieved voluntary voiding following 7 d of initial catheterization. Retrograde urethrography of each implant group at 3 m post-op revealed wide urethral calibers and preservation of organ continuity similar to pre-operative and urethrotomy controls with no evidence of contrast extravasation, strictures, fistulas, or stone formation. Histological (hematoxylin and eosin and Masson's trichrome), immunohistochemical, and histomorphometric analyses demonstrated that both silk fibroin and SIS scaffolds promoted similar extents of smooth muscle and epithelial tissue regeneration throughout the original defect sites with prominent contractile protein (α-smooth muscle actin and SM22α) and cytokeratin expression, respectively. De novo innervation and vascularization were also evident in all regenerated tissues indicated by synaptophysin-positive neuronal cells and vessels lined with CD31 expressing endothelial cells. Following 3 m post-op, minimal acute inflammatory reactions were elicited by silk fibroin scaffolds characterized by the presence of eosinophil granulocytes while SIS matrices promoted chronic inflammatory responses indicated by mobilization of mononuclear cell infiltrates. The results of this study demonstrate that bi-layer silk fibroin scaffolds represent promising biomaterials for onlay urethroplasty, capable of promoting similar degrees of tissue regeneration in comparison to conventional SIS scaffolds, but with reduced immunogenicity.Publication Evaluation of Biomaterials for Bladder Augmentation using Cystometric Analyses in Various Rodent Models(MyJove Corporation, 2012) Tu, Duong; Seth, Abhishek; Gil, Eun Seok; Kaplan, David L.; Mauney, Joshua; Estrada, CarlosRenal function and continence of urine are critically dependent on the proper function of the urinary bladder, which stores urine at low pressure and expels it with a precisely orchestrated contraction. A number of congenital and acquired urological anomalies including posterior urethral valves, benign prostatic hyperplasia, and neurogenic bladder secondary to spina bifida/spinal cord injury can result in pathologic tissue remodeling leading to impaired compliance and reduced capacity. Functional or anatomical obstruction of the urinary tract is frequently associated with these conditions, and can lead to urinary incontinence and kidney damage from increased storage and voiding pressures. Surgical implantation of gastrointestinal segments to expand organ capacity and reduce intravesical pressures represents the primary surgical treatment option for these disorders when medical management fails. However, this approach is hampered by the limitation of available donor tissue, and is associated with significant complications including chronic urinary tract infection, metabolic perturbation, urinary stone formation, and secondary malignancy. Current research in bladder tissue engineering is heavily focused on identifying biomaterial configurations which can support regeneration of tissues at defect sites. Conventional 3-D scaffolds derived from natural and synthetic polymers such as small intestinal submucosa and poly-glycolic acid have shown some short-term success in supporting urothelial and smooth muscle regeneration as well as facilitating increased organ storage capacity in both animal models and in the clinic. However, deficiencies in scaffold mechanical integrity and biocompatibility often result in deleterious fibrosis, graft contracture, and calcification, thus increasing the risk of implant failure and need for secondary surgical procedures. In addition, restoration of normal voiding characteristics utilizing standard biomaterial constructs for augmentation cystoplasty has yet to be achieved, and therefore research and development of novel matrices which can fulfill this role is needed. In order to successfully develop and evaluate optimal biomaterials for clinical bladder augmentation, efficacy research must first be performed in standardized animal models using detailed surgical methods and functional outcome assessments. We have previously reported the use of a bladder augmentation model in mice to determine the potential of silk fibroin-based scaffolds to mediate tissue regeneration and functional voiding characteristics. Cystometric analyses of this model have shown that variations in structural and mechanical implant properties can influence the resulting urodynamic features of the tissue engineered bladders. Positive correlations between the degree of matrix-mediated tissue regeneration determined histologically and functional compliance and capacity evaluated by cystometry were demonstrated in this model. These results therefore suggest that functional evaluations of biomaterial configurations in rodent bladder augmentation systems may be a useful format for assessing scaffold properties and establishing in vivo feasibility prior to large animal studies and clinical deployment. In the current study, we will present various surgical stages of bladder augmentation in both mice and rats using silk scaffolds and demonstrate techniques for awake and anesthetized cystometry.Publication The impact of discrete modes of spinal cord injury on bladder muscle contractility(BioMed Central, 2013) Seth, Abhishek; Chung, Yeun Goo; Kim, Daniel; Ramachandran, Aruna; Cristofaro, Vivian; Gomez III, Pablo; Tu, Duong; Huang, Lin; Benowitz, Larry; Di Vizio, Dolores; Sullivan, Maryrose; Adam, RosalynBackground: Prior studies have compared the effect of spinal cord injury elicited using distinct approaches on motor and visceral function. However, the impact of such discrete modes of injury specifically on bladder muscle contractility has not been explored in detail. The goal of this study is to compare the impact of complete spinal cord transection versus clip compression at thoracic vertebra eight (T8) on bladder muscle contractility. Methods: Rats underwent no treatment (Control), laminectomy (Sham, SH); complete extradural transection (TX); or cord compression with an aneurysm clip (CX). Bladders and spinal cords were harvested at 6 wk for contractility studies or histological analysis. Results: Detrusor strips from TX and CX rats showed higher spontaneous activity than those from SH rats. Furthermore, the duration of the neurally-mediated contractile response was longer in TX and CX rats compared to controls and showed attenuated relaxation. No significant differences were observed between muscle strips from SH, TX or CX rats in response to KCl, ATP or phenylephrine. However, tissues from TX and CX rats showed a higher sensitivity to carbachol compared to that from SH animals. Conclusions: Complete SCI in rats either by cord transection or compression elicits qualitatively similar changes in bladder muscle contractility. Whereas cord transection is arguably easier to perform experimentally, cord compression better models the situation observed clinically, such that each approach has clear advantages and limitations.