Person: Carroll, Kelli Jane
Loading...
Email Address
AA Acceptance Date
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Carroll
First Name
Kelli Jane
Name
Carroll, Kelli Jane
2 results
Search Results
Now showing 1 - 2 of 2
Publication Teleost Growth Factor Independence (Gfi) Genes Differentially Regulate Successive Waves of Hematopoiesis(Elsevier BV, 2013) Cooney, Jeffrey D.; Hildick-Smith, Gordon J.; Shafizadeh, Ebrahim; McBride, Paul F.; Carroll, Kelli Jane; Anderson, Heidi; Shaw, George C.; Tamplin, Owen J.; Branco, Diana S.; Dalton, Arthur J.; Shah, Dhvanit I; Wong, Clara; Gallagher, Patrick G.; Zon, Leonard; North, Trista; Paw, Barry HtinGrowth Factor Independence (Gfi) transcription factors play essential roles in hematopoiesis, differentially activating and repressing transcriptional programs required for hematopoietic stem/progenitor cell (HSPC) development and lineage specification. In mammals, Gfi1a regulates hematopoietic stem cells (HSC), myeloid and lymphoid populations, while its paralog, Gfi1b, regulates HSC, megakaryocyte and erythroid development. In zebrafish, gfi1aa is essential for primitive hematopoiesis; however, little is known about the role of gfi1aa in definitive hematopoiesis or about additional gfi factors in zebrafish. Here, we report the isolation and characterization of an additional hematopoietic gfi factor, gfi1b. We show that gfi1aa and gfi1b are expressed in the primitive and definitive sites of hematopoiesis in zebrafish. Our functional analyses demonstrate that gfi1aa and gfi1b have distinct roles in regulating primitive and definitive hematopoietic progenitors, respectively. Loss of gfi1aa silences markers of early primitive progenitors, scl and gata1. Conversely, loss of gfi1b silences runx-1, c-myb, ikaros and cd41, indicating that gfi1b is required for definitive hematopoiesis. We determine the epistatic relationships between the gfi factors and key hematopoietic transcription factors, demonstrating that gfi1aa and gfi1b join lmo2, scl, runx-1 and c-myb as critical regulators of teleost HSPC. Our studies establish a comparative paradigm for the regulation of hematopoietic lineages by gfi transcription factors.Publication The Role of Estrogen Signaling in the Induction, Specification, and Proliferation of Hematopoietic Stem Cells(2014-06-06) Carroll, Kelli Jane; North, Trista Elizabeth; Burns, Caroline; D'Amore, Patricia; Hock, Hanno; Armstrong, Scott; Galloway, Jenna; Cantor, Alan; Jin, Suk-WonHematopoietic Stem Cells (HSCs) are characterized by their ability to both self-renew and give rise to all lineages of the blood system. A recent chemical genetic screen identified 17β-estradiol (estrogen) as a novel modifier of the expression of the conserved HSC markers runx1 and cmyb in the Aorta-Gonad-Mesonephros of developing zebrafish. Exposure to exogenous estrogen during the development of the hematopoietic niche impeded specification of hemogenic endothelium and the subsequent emergence of HSCs via antagonism of somitic-derived VEGF signaling. Conversely, inhibition of endogenous estrogen activity increased the number of functional HSCs present in the embryo and resulted in higher expression of VEGF target genes, suggesting that endogenous estrogen acts to define the ventral limit of VEGF activity and hemogenic endothelial specification. In contrast, when embryos were exposed to estrogen after niche specification, markers of HSCs were increased, indicating that estrogen has a biphasic effect on HSC formation; this effect appears to be at least partially mediated by enhanced cell cycling of the HSC population. Estrogen exposure during primitive erythropoiesis likewise increased the number of erythroid progenitors in the embryo, but their maturation into functional erythrocytes was impaired. Inhibition of erythrocyte maturation is also conserved in a mammalian model of in utero excess estrogen, causing propensity for embryonic lethality. Treatment of adult zebrafish with exogenous estrogen after ablation of the hematopoietic system by irradiation revealed that elevated estrogen levels improved hematopoietic regeneration. Consistent with a role for hormonal regulation of HSC homeostasis, accelerated recovery of hematopoietic stem and progenitor numbers was observed in female fish compared to males, suggesting an endogenous difference in regenerative capacity between the sexes. Together, these data identify multiple distinct roles for estrogen in HSC biology and indicate it is a physiologically relevant regulator of HSC development and homeostasis.