Person: Sanavia, Tiziana
Loading...
Email Address
AA Acceptance Date
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Sanavia
First Name
Tiziana
Name
Sanavia, Tiziana
3 results
Search Results
Now showing 1 - 3 of 3
Publication DNA methylation profiling reveals common signatures of tumorigenesis and defines epigenetic prognostic subtypes of canine Diffuse Large B-cell Lymphoma(Nature Publishing Group UK, 2017) Ferraresso, Serena; Aricò, Arianna; Sanavia, Tiziana; Da Ros, Silvia; Milan, Massimo; Cascione, Luciano; Comazzi, Stefano; Martini, Valeria; Giantin, Mery; Di Camillo, Barbara; Mazzariol, Sandro; Giannuzzi, Diana; Marconato, Laura; Aresu, LucaEpigenetic deregulation is a hallmark of cancer characterized by frequent acquisition of new DNA methylation in CpG islands. To gain insight into the methylation changes of canine DLBCL, we investigated the DNA methylome in primary DLBCLs in comparison with control lymph nodes by genome-wide CpG microarray. We identified 1,194 target loci showing different methylation levels in tumors compared with controls. The hypermethylated CpG loci included promoter, 5′-UTRs, upstream and exonic regions. Interestingly, targets of polycomb repressive complex in stem cells were mostly affected suggesting that DLBCL shares a stem cell-like epigenetic pattern. Functional analysis highlighted biological processes strongly related to embryonic development, tissue morphogenesis and cellular differentiation, including HOX, BMP and WNT. In addition, the analysis of epigenetic patterns and genome-wide methylation variability identified cDLBCL subgroups. Some of these epigenetic subtypes showed a concordance with the clinical outcome supporting the hypothesis that the accumulation of aberrant epigenetic changes results in a more aggressive behavior of the tumor. Collectively, our results suggest an important role of DNA methylation in DLBCL where aberrancies in transcription factors were frequently observed, suggesting an involvement during tumorigenesis. These findings warrant further investigation to improve cDLBCL prognostic classification and provide new insights on tumor aggressiveness.Publication MiR-21 over-expression and Programmed Cell Death 4 down-regulation features malignant pleural mesothelioma(Impact Journals LLC, 2018) Nicolè, Lorenzo; Cappellesso, Rocco; Sanavia, Tiziana; Guzzardo, Vincenza; Fassina, AmbrogioBackground: Differential diagnosis between malignant pleural mesothelioma (MPM) and benign mesothelial conditions is still challenging and there is a lack of useful markers. Programmed cell death 4 (PDCD4) is a well-known tumor suppressor gene in several cancers, its post-transcriptional activity is directly controlled by miR-21, whose over-expression has been recently reported in MPM compared to normal mesothelium. Aim of this study was to test this suppressor gene as a possible new marker of malignant transformation in mesothelial cells, as well as a new prognostic marker. Methods: PDCD4 nuclear expression was assessed by immunohistochemistry (IHC) in 40 non-neoplastic pleural (NNP) and 40 MPM formalin-fixed and paraffin-embedded specimens. PDCD4 and miR-21 expressions were analyzed by qRT-PCR in all cases. In situ hybridization (ISH) of miR-21 was performed in 5 representative cases of both groups. The prognostic relevance of PDCD4 was assessed in a public available gene expression dataset. Results: IHC showed that PDCD4 nuclear expression was significantly lower in MPM than in NNP. PDCD4 was down-regulated, whereas miR-21 was over-expressed in MPM cases compared to NNP ones. ISH detected miR-21 only in MPM specimens. Down-expression of PDCD4 was found significantly associated with short overall survival in publicly available data. Conclusions: These findings highlighted a switch between PDCD4 and miR-21 expression in MPM. Further studies should assess the diagnostic reliability of these two markers for MPM in biopsy and effusion specimens.Publication Oncofetal gene SALL4 and prognosis in cancer: A systematic review with meta-analysis(Impact Journals LLC, 2017) Nicolè, Lorenzo; Sanavia, Tiziana; Veronese, Nicola; Cappellesso, Rocco; Luchini, Claudio; Dabrilli, Paolo; Fassina, AmbrogioThe Spalt-Like Transcription Factor 4 (SALL4) oncogene plays a central function in embryo-fetal development and is absent in differentiated tissues. Evidence suggests that it can be reactivated in several cancers worsening the prognosis. We aimed at investigating the risk associated with SALL4 reactivation for all-cause mortality and recurrence in cancer using the current literature. A PubMed and SCOPUS search until 1st September 2016 was performed, focusing on perspective studies reporting prognostic parameters in cancer data. In addition, 17 datasets of different cancer types from The Cancer Genome Atlas were considered. A total of 9,947 participants across 40 cohorts, followed-up for about 5 years on average, were analyzed comparing patients showing SALL4 presence (SALL4+, n = 1,811) or absence (SALL4-, n = 8,136). All data were summarised using risk ratios (RRs) for the number of deaths/recurrences and hazard ratios (HRs) for the time-dependent risk related to SALL4+, adjusted for potential confounders. SALL4+ significantly increased overall mortality (RR = 1.34, 95% confidence intervals (CI)=1.21-1.48, p<0.0001, I2=66%; HR=1.4; 95%CI: 1.19-1.65; p<0.0001; I2=63%) and recurrence of disease (RR = 1.25, 95% CI = 1.1-1.42, p=0.0006, I2=62%); HR=1.52; 95% CI: 1.22-1.89, p=0.0002; I2=69%) compared to SALL4-. Moreover, SALL4 remained significantly associated with poor prognosis even using HRs adjusted for potential confounders (overall mortality: HR=1.4; 95%CI: 1.19-1.65; p<0.0001; I2=63%; recurrence of disease: HR=1.52; 95% CI: 1.22-1.89, p=0.0002; I2=69%). These results suggest that SALL4 expression increases both mortality and recurrence of cancer, confirming this gene as an important prognostic marker and a potential target for personalized medicine.