Person: Grusby, Michael
Loading...
Email Address
AA Acceptance Date
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Grusby
First Name
Michael
Name
Grusby, Michael
4 results
Search Results
Now showing 1 - 4 of 4
Publication ZBTB20 is required for anterior pituitary development and lactotrope specification(Nature Publishing Group, 2016) Cao, Dongmei; Ma, Xianhua; Cai, Jiao; Luan, Jing; Liu, An-Jun; Yang, Rui; Cao, Yi; Zhu, Xiaotong; Zhang, Hai; Chen, Yu-Xia; Shi, Yuguang; Shi, Guang-Xia; Zou, Dajin; Cao, Xuetao; Grusby, Michael; Xie, Zhifang; Zhang, Weiping J.The anterior pituitary harbours five distinct hormone-producing cell types, and their cellular differentiation is a highly regulated and coordinated process. Here we show that ZBTB20 is essential for anterior pituitary development and lactotrope specification in mice. In anterior pituitary, ZBTB20 is highly expressed by all the mature endocrine cell types, and to some less extent by somatolactotropes, the precursors of prolactin (PRL)-producing lactotropes. Disruption of Zbtb20 leads to anterior pituitary hypoplasia, hypopituitary dwarfism and a complete loss of mature lactotropes. In ZBTB20-null mice, although lactotrope lineage commitment is normally initiated, somatolactotropes exhibit profound defects in lineage specification and expansion. Furthermore, endogenous ZBTB20 protein binds to Prl promoter, and its knockdown decreases PRL expression and secretion in a lactotrope cell line MMQ. In addition, ZBTB20 overexpression enhances the transcriptional activity of Prl promoter in vitro. In conclusion, our findings point to ZBTB20 as a critical regulator of anterior pituitary development and lactotrope specification.Publication PDLIM2 restricts Th1 and Th17 differentiation and prevents autoimmune disease(BioMed Central, 2012) Qu, Zhaoxia; Fu, Jingyu; Ma, Huihui; Zhou, Jingjiao; Jin, Meihua; Mapara, Markus Y; Grusby, Michael; Xiao, GutianBackground: PDLIM2 is essential for the termination of the inflammatory transcription factors NF-κB and STAT but is dispensable for the development of immune cells and immune tissues/organs. Currently, it remains unknown whether and how PDLIM2 is involved in physiologic and pathogenic processes. Results: Here we report that naive PDLIM2 deficient CD4+ T cells were prone to differentiate into Th1 and Th17 cells. PDLIM2 deficiency, however, had no obvious effect on lineage commitment towards Th2 or Treg cells. Notably, PDLIM2 deficient mice exhibited increased susceptibility to experimental autoimmune encephalitis (EAE), a Th1 and/or Th17 cell-mediated inflammatory disease model of multiple sclerosis (MS). Mechanistic studies further indicate that PDLIM2 was required for restricting expression of Th1 and Th17 cytokines, which was in accordance with the role of PDLIM2 in the termination of NF-κB and STAT activation. Conclusion: These findings suggest that PDLIM2 is a key modulator of T-cell-mediated immune responses that may be targeted for the therapy of human autoimmune diseases.Publication Interleukin-21 Is Required for the Development of Type 1 Diabetes in NOD Mice(American Diabetes Association, 2009) Sutherland, Andrew P; Van Belle, Tom; Wurster, Andrea L.; Suto, Akira; Michaud, Monia; Zhang, Dorothy; Grusby, Michael; von Herrath, MatthiasOBJECTIVE: Interleukin (IL)-21 is a type 1 cytokine that has been implicated in the pathogenesis of type 1 diabetes via the unique biology of the nonobese diabetic (NOD) mouse strain. The aim of this study was to investigate a causal role for IL-21 in type 1 diabetes. RESEARCH DESIGN AND METHODS: We generated IL-21R–deficient NOD mice and C57Bl/6 mice expressing IL-21 in pancreatic β-cells, allowing the determination of the role of insufficient and excessive IL-21 signaling in type 1 diabetes. RESULTS: Deficiency in IL-21R expression renders NOD mice resistant to insulitis, production of insulin autoantibodies, and onset of type 1 diabetes. The lymphoid compartment in IL-21R−/− NOD is normal and does not contain an increased regulatory T-cell fraction or diminished effector cytokine responses. However, we observed a clear defect in autoreactive effector T-cells in IL-21R−/− NOD by transfer experiments. Conversely, overexpression of IL-21 in pancreatic β-cells induced inflammatory cytokine and chemokines, including IL-17A, IL17F, IFN-γ, monocyte chemoattractant protein (MCP)-1, MCP-2, and interferon-inducible protein-10 in the pancreas. The ensuing leukocytic infiltration in the islets resulted in destruction of β-cells and spontaneous type 1 diabetes in the normally diabetes-resistant C57Bl/6 and NOD × C57Bl/6 backgrounds. CONCLUSIONS: This work provides demonstration of the essential prodiabetogenic activities of IL-21 on diverse genetic backgrounds (NOD and C57BL/6) and indicates that IL-21 blockade could be a promising strategy for interventions in human type 1 diabetes.Publication Development and Characterization of IL-21–producing CD4+ T Cells(The Rockefeller University Press, 2008) Suto, Akira; Kashiwakuma, Daisuke; Kagami, Shin-ichiro; Hirose, Koichi; Watanabe, Norihiko; Yokote, Kotaro; Saito, Yasushi; Nakayama, Toshinori; Iwamoto, Itsuo; Nakajima, Hiroshi; Grusby, MichaelIt has recently been shown that interleukin (IL)-21 is produced by Th17 cells, functions as an autocrine growth factor for Th17 cells, and plays critical roles in autoimmune diseases. In this study, we investigated the differentiation and characteristics of IL-21–producing CD4+ T cells by intracellular staining. Unexpectedly, we found that under Th17-polarizing conditions, the majority of IL-21–producing CD4+ T cells did not produce IL-17A and -17F. We also found that IL-6 and -21 potently induced the development of IL-21–producing CD4+ T cells without the induction of IL-4, IFN-γ, IL-17A, or IL-17F production. On the other hand, TGF-β inhibited IL-6– and IL-21–induced development of IL-21–producing CD4+ T cells. IL-2 enhanced the development of IL-21–producing CD4+ T cells under Th17-polarizing conditions. Finally, IL-21–producing CD4+ T cells exhibited a stable phenotype of IL-21 production in the presence of IL-6, but retained the potential to produce IL-4 under Th2-polarizing conditions and IL-17A under Th17-polarizing conditions. These results suggest that IL-21–producing CD4+ T cells exhibit distinct characteristics from Th17 cells and develop preferentially in an IL-6–rich environment devoid of TGF-β, and that IL-21 functions as an autocrine growth factor for IL-21–producing CD4+ T cells.