Person: Meselson, Matthew
Loading...
Email Address
AA Acceptance Date
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Meselson
First Name
Matthew
Name
Meselson, Matthew
6 results
Search Results
Now showing 1 - 6 of 6
Publication Degenerate Tetraploidy Was Established Before Bdelloid Rotifer Families Diverged(Oxford University Press, 2009) Hur, Jae H.; Van Doninck, Karine; Mandigo, Morgan L.; Meselson, MatthewRotifers of Class Bdelloidea are abundant freshwater invertebrates known for their remarkable ability to survive desiccation and their lack of males and meiosis. Sequencing and annotation of approximately 50-kb regions containing the four hsp82 heat shock genes of the bdelloid Philodina roseola, each located on a separate chromosome, have suggested that its genome is that of a degenerate tetraploid. In order to determine whether a similar structure exists in a bdelloid distantly related to P. roseola and if degenerate tetraploidy was established before the two species separated, we sequenced regions containing the hsp82 genes of a bdelloid belonging to a different family, Adineta vaga, and the histone gene clusters of P. roseola and A. vaga. Our findings are entirely consistent with degenerate tetraploidy and show that it was established before the two bdelloid families diverged and therefore probably before the bdelloid radiation.Publication Extreme Resistance of Bdelloid Rotifers to Ionizing Radiation(National Academy of Sciences of the United States of America, 2008) Gladyshev, Evgeniy; Meselson, MatthewRotifers of class Bdelloidea are common invertebrate animals with highly unusual characteristics, including apparently obligate asexuality, the ability to resume reproduction after desiccation at any life stage, and a paucity of transposable genetic elements of types not prone to horizontal transmission. We find that bdelloids are also extraordinarily resistant to ionizing radiation (IR). Reproduction of the bdelloids Adineta vaga and Philodina roseola is much more resistant to IR than that of Euchlanis dilatata, a rotifer belonging to the desiccation-intolerant and facultatively sexual class Monogononta, and all other animals for which we have found relevant data. By analogy with the desiccation- and radiationresistant bacterium Deinococcus radiodurans, we suggest that the extraordinary radiation resistance of bdelloid rotifers is a consequence of their evolutionary adaptation to survive episodes of desiccation encountered in their characteristic habitats and that the damage incurred in such episodes includes DNA breakage that is repaired upon rehydration. Such breakage and repair may have maintained bdelloid chromosomes as colinear pairs and kept the load of transposable genetic elements low and may also have contributed to the success of bdelloid rotifers in avoiding the early extinction suffered by most asexuals.Publication Diverse DNA Transposons in Rotifers of the Class Bdelloidea(National Academy of Sciences, 2005) Arkhipova, Irina; Meselson, MatthewWe surveyed the diversity, structural organization, and patterns of evolution of DNA transposons in rotifers of the class Bdelloidea, a group of basal triploblast animals that appears to have evolved for millions of years without sexual reproduction. Representatives of five superfamilies were identified: ITm (IS630Tcmariner), hAT, piggyBac, helitron, and foldback. Except for mariners, no fully intact copies were found. Mariners, both intact and decayed, are present in high copy number, and those described here may be grouped in several closely related lineages. Comparisons across lineages show strong evidence of purifying selection, whereas there is little or no evidence of such selection within lineages. This pattern could have resulted from repeated horizontal transfers from an exogenous source, followed by limited intragenomic proliferation, or, less plausibly, from within-host formation of new lineages under host- or element-based selection for function, in either case followed by eventual inactivation and decay. Unexpectedly, the flanking sequences surrounding the majority of mariners are very similar, indicating either insertion specificity or proliferation as part of larger DNA segments. Members of all superfamilies are present near chromosome ends, associated with the apparently domesticated retroelement Athena, in large clusters composed of diverse DNA transposons, often inserted into each other, whereas the examined gene-rich regions are nearly transposon-free.Publication Evidence for Degenerate Tetraploidy in Bdelloid Rotifers(National Academy of Sciences (USA), 2008) Welch, Jessica L. Mark; Welch, David B. Mark; Meselson, MatthewRotifers of class Bdelloidea have evolved for millions of years apparently without sexual reproduction. We have sequenced 45- to 70-kb regions surrounding the four copies of the hsp82 gene of the bdelloid rotifer Philodina roseola, each of which is on a separate chromosome. The four regions comprise two colinear gene-rich pairs with gene content, order, and orientation conserved within each pair. Only a minority of genes are common to both pairs, also in the same orientation and order, but separated by gene-rich segments present in only one or the other pair. The pattern is consistent with degenerate tetraploidy with numerous segmental deletions, some in one pair of colinear chromosomes and some in the other. Divergence in 1,000-bp windows varies along an alignment of a colinear pair, from zero to as much as 20% in a pattern consistent with gene conversion associated with recombinational repair of DNA double-strand breaks. Although pairs of colinear chromosomes are a characteristic of sexually reproducing diploids and polyploids, a quite different explanation for their presence in bdelloids is suggested by the recent finding that bdelloid rotifers can recover and resume reproduction after suffering hundreds of radiation-induced DNA double-strand breaks per oocyte nucleus. Because bdelloid primary oocytes are in G1 and therefore lack sister chromatids, we propose that bdelloid colinear chromosome pairs are maintained as templates for the repair of DNA double-strand breaks caused by the frequent desiccation and rehydration characteristic of bdelloid habitats.Publication Massive Horizontal Gene Transfer in Bdelloid Rotifers(Science, 2008) Gladyshev, Evgeniy; Meselson, Matthew; Arkhipova, IrinaHorizontal gene transfer in metazoans has been documented in only a few species and is usually associated with endosymbiosis or parasitism. By contrast, in bdelloid rotifers we found many genes that appear to have originated in bacteria, fungi, and plants, concentrated in telomeric regions along with diverse mobile genetic elements. Bdelloid proximal gene-rich regions, however, appeared to lack foreign genes, thereby resembling those of model metazoan organisms. Some of the foreign genes were defective, whereas others were intact and transcribed; some of the latter contained functional spliceosomal introns. One such gene, apparently of bacterial origin, was overexpressed in Escherichia coli and yielded an active enzyme. The capture and functional assimilation of exogenous genes may represent an important force in bdelloid evolution.Publication Phylogenomics of Unusual Histone H2A Variants in Bdelloid Rotifers(Public Library of Science, 2009) Van Doninck, Karine; Mandigo, Morgan L.; Hur, Jae H.; Wang, Peter; Guglielmini, Julien; Milinkovitch, Michel C.; Lane, William; Meselson, Matthew; Malik, Harmit S.Rotifers of Class Bdelloidea are remarkable in having evolved for millions of years, apparently without males and meiosis. In addition, they are unusually resistant to desiccation and ionizing radiation and are able to repair hundreds of radiation-induced DNA double-strand breaks per genome with little effect on viability or reproduction. Because specific histone H2A variants are involved in DSB repair and certain meiotic processes in other eukaryotes, we investigated the histone H2A genes and proteins of two bdelloid species. Genomic libraries were built and probed to identify histone H2A genes in Adineta vaga and Philodina roseola, species representing two different bdelloid families. The expressed H2A proteins were visualized on SDS-PAGE gels and identified by tandem mass spectrometry. We find that neither the core histone H2A, present in nearly all other eukaryotes, nor the H2AX variant, a ubiquitous component of the eukaryotic DSB repair machinery, are present in bdelloid rotifers. Instead, they are replaced by unusual histone H2A variants of higher mass. In contrast, a species of rotifer belonging to the facultatively sexual, desiccation- and radiation-intolerant sister class of bdelloid rotifers, the monogononts, contains a canonical core histone H2A and appears to lack the bdelloid H2A variant genes. Applying phylogenetic tools, we demonstrate that the bdelloid-specific H2A variants arose as distinct lineages from canonical H2A separate from those leading to the H2AX and H2AZ variants. The replacement of core H2A and H2AX in bdelloid rotifers by previously uncharacterized H2A variants with extended carboxy-terminal tails is further evidence for evolutionary diversity within this class of histone H2A genes and may represent adaptation to unusual features specific to bdelloid rotifers.