Person:
Mordes, Daniel

Loading...
Profile Picture

Email Address

AA Acceptance Date

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Mordes

First Name

Daniel

Name

Mordes, Daniel

Search Results

Now showing 1 - 4 of 4
  • Thumbnail Image
    Publication
    Glioblastoma Mimicking an Arteriovenous Malformation
    (Frontiers Media S.A., 2013) Khanna, Arjun; Venteicher, Andrew S; Walcott, Brian; Kahle, Kristopher T.; Mordes, Daniel; William, Christopher M.; Ghogawala, Zoher; Ogilvy, Christopher
    Abnormal cerebral vasculature can be a manifestation of a vascular malformation or a neoplastic process. We report the case of a patient with angiography-negative subarachnoid hemorrhage (SAH) who re-presented 3 years later with a large intraparenchymal hemorrhage. Although imaging following the intraparenchymal hemorrhage was suggestive of arteriovenous malformation, the patient was ultimately found to have an extensive glioblastoma associated with abnormal tumor vasculature. The case emphasizes the need for magnetic resonance imaging to investigate angiography-negative SAH in suspicious cases to rule out occult etiologies, such as neoplasm. We also discuss diagnostic pitfalls when brain tumors are associated with hemorrhage and abnormal vasculature.
  • Thumbnail Image
    Publication
    Identification of neurotoxic cytokines by profiling Alzheimer’s disease tissues and neuron culture viability screening
    (Nature Publishing Group, 2015) Wood, Levi B.; Winslow, Ashley R.; Proctor, Elizabeth; McGuone, Declan; Mordes, Daniel; Frosch, Matthew; Hyman, Bradley; Lauffenburger, Douglas A.; Haigis, Kevin
    Alzheimer’s disease (AD) therapeutics based on the amyloid hypothesis have shown minimal efficacy in patients, suggesting that the activity of amyloid beta (Aβ) represents only one aspect of AD pathogenesis. Since neuroinflammation is thought to play an important role in AD, we hypothesized that cytokines may play a direct role in promoting neuronal death. Here, we profiled cytokine expression in a small cohort of human AD and control brain tissues. We identified AD-associated cytokines using partial least squares regression to correlate cytokine expression with quantified pathologic disease state and then used neuron cultures to test whether cytokines up-regulated in AD tissues could affect neuronal viability. This analysis identified cytokines that were associated with the pathological severity. Of the top correlates, only TNF-α reduced viability in neuron culture when applied alone. VEGF also reduced viability when applied together with Aβ, which was surprising because VEGF has been viewed as a neuro-protective protein. We found that this synthetic pro-death effect of VEGF in the context of Aβ was commensurate with VEGFR-dependent changes in multiple signaling pathways that govern cell fate. Our findings suggest that profiling of tissues combined with a culture-based screening approach can successfully identify new mechanisms driving neuronal death.
  • Thumbnail Image
    Publication
    Monitoring peripheral nerve degeneration in ALS by label-free stimulated Raman scattering imaging
    (Nature Publishing Group, 2016) Tian, Feng; Yang, Wenlong; Mordes, Daniel; Wang, Jin-Yuan; Salameh, Johnny S.; Mok, Woon Jong Joanie; Chew, Jeannie; Sharma, Aarti; Leno-Duran, Ester; Suzuki-Uematsu, Satomi; Suzuki, Naoki; Han, Steve S.; Lu, Fa-Ke; Ji, Minbiao; Zhang, Rosanna; Liu, Yue; Strominger, Jack; Shneider, Neil A.; Petrucelli, Leonard; Xie, X. Sunney; Eggan, Kevin
    The study of amyotrophic lateral sclerosis (ALS) and potential interventions would be facilitated if motor axon degeneration could be more readily visualized. Here we demonstrate that stimulated Raman scattering (SRS) microscopy could be used to sensitively monitor peripheral nerve degeneration in ALS mouse models and ALS autopsy materials. Three-dimensional imaging of pre-symptomatic SOD1 mouse models and data processing by a correlation-based algorithm revealed that significant degeneration of peripheral nerves could be detected coincidentally with the earliest detectable signs of muscle denervation and preceded physiologically measurable motor function decline. We also found that peripheral degeneration was an early event in FUS as well as C9ORF72 repeat expansion models of ALS, and that serial imaging allowed long-term observation of disease progression and drug effects in living animals. Our study demonstrates that SRS imaging is a sensitive and quantitative means of measuring disease progression, greatly facilitating future studies of disease mechanisms and candidate therapeutics.
  • Publication
    ALS-Implicated Protein TDP-43 Sustains Levels of STMN2, a Mediator of Motor Neuron Growth and Repair
    (Springer Nature, 2019-01-14) Limone, Francesco; Guerra San Juan, Irune; Burberry, Aaron; Kirchner, Rory; Chen, Kuchuan; Eggan, Kevin; Klim, Joseph; Williams, Luis; Davis-Dusenbery, Brandi N; Mordes, Daniel; Steinbaugh, Michael; Gamage, Kanchana; Moccia, Rob; Cassel, Seth; Wainger, Brian; Woolf, Clifford
    The discovery that TDP-43 mutations cause familial ALS and that many patients display pathological TDP-43 mislocalization has nominated altered RNA metabolism as a potential disease mechanism. Despite its importance, the identity of RNAs regulated by TDP-43 in motor neurons remains poorly understood. Here, we report transcripts whose abundances in human motor neurons are sensitive to TDP-43 depletion. Notably, we found STMN2, which encodes a microtubule regulator, declined after TDP-43 knockdown, in patient-specific motor neurons, following TDP-43 mislocalization, and in the postmortem patient spinal cords. Loss of STMN2 upon reduced TDP-43 function was due to the emergence of a cryptic exon, which is of substantial functional importance, as we further demonstrate that STMN2 is necessary for both axonal outgrowth and repair. Importantly, post-translational stabilization of STMN2 could rescue neurite outgrowth and axon regeneration deficits induced by TDP-43 depletion. We propose restoring STMN2 expression warrants future examination as an ALS therapeutic strategy.