Person: Chen, Baoen
Loading...
Email Address
AA Acceptance Date
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Chen
First Name
Baoen
Name
Chen, Baoen
3 results
Search Results
Now showing 1 - 3 of 3
Publication Palmitoylation-dependent activation of MC1R prevents melanomagenesis(2017) Chen, Shuyang; Zhu, Bo; Yin, Chengqian; Liu, Wei; Han, Changpeng; Chen, Baoen; Liu, Tongzheng; Li, Xin; Chen, Xiang; Li, Chunying; Hu, Limin; Zhou, Jun; Xu, Zhi-Xiang; Gao, Xiumei; Wu, Xu; Goding, Colin R.; Cui, RutaoThe melanocortin-1 receptor (MC1R), a G protein-coupled receptor, plays a crucial role in human and mouse pigmentation1–8. Activation of MC1R in melanocytes by α-melanocyte-stimulating hormone (α-MSH)9 stimulates cAMP signaling and melanin production and enhances DNA repair after UV irradiation (UVR)10–16. Individuals carrying MC1R variants, especially those associated with red hair color, fair skin and poor tanning ability (RHC-variants), are associated with higher risk of melanoma5,17,18,19,20. However, how MC1R activity might be modulated by UV irradiation, why redheads are more prone to developing melanoma, and whether the activity of RHC variants might be restored for therapeutic benefit remain unresolved questions. Here we demonstrate a potential MC1R-targeted intervention strategy to rescue loss-of-function MC1R in MC1R RHC-variants for therapeutic benefit based on activating MC1R protein palmitoylation. Specifically, MC1R palmitoylation, primarily mediated by the protein-acyl transferase (PAT) ZDHHC13, is essential for activating MC1R signaling that triggers increased pigmentation, UVB-induced G1-like cell cycle arrest and control of senescence and melanomagenesis in vitro and in vivo. Using C57BL/6J-MC1Re/eJ mice expressing MC1R RHC-variants we show that pharmacological activation of palmitoylation rescues the defects of MC1R RHC-variants and prevents melanomagenesis. The results highlight a central role for MC1R palmitoylation in pigmentation and protection against melanoma.Publication ZDHHC7-Mediated S-Palmitoylation of Scribble Regulates Cell Polarity(2016) Chen, Baoen; Zheng, Baohui; DeRan, Micael; Jarugumilli, Gopala; Fu, Jianjun; Brooks, Yang S.; Wu, XuScribble (SCRIB) is a tumor suppressor protein, playing critical roles in establishing and maintaining epithelial cell polarity. Paradoxically, SCRIB is frequently amplified in human cancers, however, fails to localize properly to cell-cell junctions, suggesting that mislocalization of SCRIB contributes to tumorigenesis. Using chemical reporters, here we showed that SCRIB localization is regulated by S-palmitoylation at conserved cysteine residues. The palmitoylation-deficient mutants of SCRIB are mislocalized, leading to disruption of cell polarity and loss of their tumor suppressive activities to oncogenic YAP, MAPK and PI3K/Akt pathways. We further found that ZDHHC7 is the major palmitoyl acyltransferase regulating SCRIB. Knockout of ZDHHC7 led to SCRIB mislocalization and YAP activation, and disruption of SCRIB’s suppressive activities in HRasV12-induced cell invasion. In summary, we demonstrated that ZDHHC7-mediated SCRIB palmitoylation is critical for SCRIB membrane targeting, cell polarity, and tumor suppression, providing new mechanistic insights of how dynamic protein palmitoylation regulates cell polarity and tumorigenesis.Publication Fatty Acids and Cancer-Amplified ZDHHC19 Promote STAT3 Activation Through S-Palmitoylation(Springer Science and Business Media LLC, 2019-08-28) Niu, Jixiao; Sun, Yang; Chen, Baoen; Mino-Kenudson, Mari; Zheng, Baohui; Jarugumilli, Gopala; Walker, Sarah; Hata, Aaron; David, Frank; Wu, XuSignal transducer and activator of transcription 3 (STAT3) plays a critical role in regulating cell fate, inflammation and immunity. Cytokines and growth factors activate STAT3 through kinase-mediated tyrosine phosphorylation and dimerization. It remains unknown whether other factors could promote STAT3 activation through different mechanisms. Here we show that STAT3 is posttranslationally S-palmitoylated at the Src Homology 2 (SH2) domain, promoting its dimerization and transcriptional activation. Fatty acids could directly activate STAT3 by enhancing its palmitoylation, in synergy with cytokine stimulation. We further identified ZDHHC19 as a palmitoyl acyltransferase (PAT) regulating STAT3. Cytokine stimulation enhances STAT3 palmitoylation by promoting ZDHHC19–STAT3 association mediated by Grb2 SH3 domain. Silencing ZDHHC19 blocks STAT3 palmitoylation and dimerization, impairing cytokine and fatty acid-induced STAT3 activation. Importantly, ZDHHC19 is frequently amplified in multiple human cancers, including in 39% of lung squamous cell carcinomas (LSCCs). High ZDHHC19 levels correlate with high nuclear STAT3 in patient samples. In addition, ZDHHC19 knockout in LSCC cells significantly blocks STAT3 activity, and inhibits fatty acid-induced tumorsphere formation and high-fat diet (HFD)-induced tumorigenesis in vivo. Taken together, we reveal that fatty acid and ZDHHC19-mediated palmitoylation are additional signals regulating STAT3, linking deregulation of palmitoylation to inflammation and cancer.