Person:
Byun, Hyang-Min

Loading...
Profile Picture

Email Address

AA Acceptance Date

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Byun

First Name

Hyang-Min

Name

Byun, Hyang-Min

Search Results

Now showing 1 - 9 of 9
  • Thumbnail Image
    Publication
    Evolutionary age of repetitive element subfamilies and sensitivity of DNA methylation to airborne pollutants
    (BioMed Central, 2013) Byun, Hyang-Min; Motta, Valeria; Panni, Tommaso; Bertazzi, Pier Alberto; Apostoli, Pietro; Hou, Lifang; Baccarelli, Andrea A
    Background: Repetitive elements take up >40% of the human genome and can change distribution through transposition, thus generating subfamilies. Repetitive element DNA methylation has associated with several diseases and environmental exposures, including exposure to airborne pollutants. No systematic analysis has yet been conducted to examine the effects of exposures across different repetitive element subfamilies. The purpose of the study is to evaluate sensitivity of DNA methylation in differentially‒evolved LINE, Alu, and HERV subfamilies to different types of airborne pollutants. Methods: We sampled a total of 120 male participants from three studies (20 high-, 20 low-exposure in each study) of steel workers exposed to metal-rich particulate matter (measured as PM10) (Study 1); gas-station attendants exposed to air benzene (Study 2); and truck drivers exposed to traffic-derived elemental carbon (Study 3). We measured methylation by bisulfite-PCR-pyrosequencing in 10 differentially‒evolved repetitive element subfamilies. Results: High-exposure groups exhibited subfamily-specific methylation differences compared to low-exposure groups: L1PA2 showed lower DNA methylation in steel workers (P=0.04) and gas station attendants (P=0.03); L1Ta showed lower DNA methylation in steel workers (P=0.02); AluYb8 showed higher DNA methylation in truck drivers (P=0.05). Within each study, dose–response analyses showed subfamily-specific correlations of methylation with exposure levels. Interaction models showed that the effects of the exposures on DNA methylation were dependent on the subfamily evolutionary age, with stronger effects on older LINEs from PM10 (p‒interaction=0.003) and benzene (p‒interaction=0.04), and on younger Alus from PM10 (p-interaction=0.02). Conclusions: The evolutionary age of repetitive element subfamilies determines differential susceptibility of DNA methylation to airborne pollutants.
  • Thumbnail Image
    Publication
    Predicting DNA methylation level across human tissues
    (Oxford University Press, 2014) Ma, Baoshan; Wilker, Elissa; Willis-Owen, Saffron A. G.; Byun, Hyang-Min; Wong, Kenny C. C.; Motta, Valeria; Baccarelli, Andrea A.; Schwartz, Joel; Cookson, William O. C. M.; Khabbaz, Kamal; Mittleman, Murray; Moffatt, Miriam F.; Liang, Liming
    Differences in methylation across tissues are critical to cell differentiation and are key to understanding the role of epigenetics in complex diseases. In this investigation, we found that locus-specific methylation differences between tissues are highly consistent across individuals. We developed a novel statistical model to predict locus-specific methylation in target tissue based on methylation in surrogate tissue. The method was evaluated in publicly available data and in two studies using the latest IlluminaBeadChips: a childhood asthma study with methylation measured in both peripheral blood leukocytes (PBL) and lymphoblastoid cell lines; and a study of postoperative atrial fibrillation with methylation in PBL, atrium and artery. We found that our method can greatly improve accuracy of cross-tissue prediction at CpG sites that are variable in the target tissue [R2 increases from 0.38 (original R2 between tissues) to 0.89 for PBL-to-artery prediction; from 0.39 to 0.95 for PBL-to-atrium; and from 0.81 to 0.98 for lymphoblastoid cell line-to-PBL based on cross-validation, and confirmed using cross-study prediction]. An extended model with multiple CpGs further improved performance. Our results suggest that large-scale epidemiology studies using easy-to-access surrogate tissues (e.g. blood) could be recalibrated to improve understanding of epigenetics in hard-to-access tissues (e.g. atrium) and might enable non-invasive disease screening using epigenetic profiles.
  • Thumbnail Image
    Publication
    Nutrients Intake Is Associated with DNA Methylation of Candidate Inflammatory Genes in a Population of Obese Subjects
    (MDPI, 2014) Bollati, Valentina; Favero, Chiara; Albetti, Benedetta; Tarantini, Letizia; Moroni, Alice; Byun, Hyang-Min; Motta, Valeria; Conti, Diana Misaela; Tirelli, Amedea Silvia; Vigna, Luisella; Bertazzi, Pier Alberto; Pesatori, Angela Cecilia
    The aim of the present study was to evaluate the potential association between dietary nutrients and alterations in DNA methylation in a set of five candidate genes, including CD14, Et-1, iNOS, HERV-w and TNFα, in a population of overweight/obese subjects. We evaluated possible associations between gene methylation and clinical blood parameters, including total cholesterol (TC), low- and high-density lipoprotein cholesterol (LDL-C and HDL-C), triglyceride and homocysteine levels. We employed validated methods to assess anthropometric, clinical and dietary data, as well as pyrosequencing to evaluate DNA methylation of the five candidate genes in 165 overweight/obese subjects. There was no association between body mass index and DNA methylation of the five candidate genes in this group of subjects. Positive associations were observed between TNFα methylation and blood levels of LDL-C (β = 0.447, p = 0.002), TC/HDL-C (β = 0.467, p = 0.001) and LDL-C/HDL-C (β = 0.445, p = 0.002), as well as between HERV-w methylation and dietary intakes of β-carotene (β = 0.088, p = 0.051) and carotenoids (β = 0.083, p = 0.029). TNFα methylation showed negative associations with dietary intakes of cholesterol (β = −0.278, p = 0.048), folic acid (β = −0.339, p = 0.012), β-carotene (β = −0.332, p = 0.045), carotenoids (β = −0.331, p = 0.015) and retinol (β = −0.360, p = 0.008). These results suggest a complex relationship among nutrient intake, oxidative stress and DNA methylation.
  • Thumbnail Image
    Publication
    Heart rate variability and DNA methylation levels are altered after short-term metal fume exposure among occupational welders: a repeated-measures panel study
    (BioMed Central, 2014) Fan, Tianteng; Fang, Shona C; Cavallari, Jennifer M; Barnett, Ian; Wang, Zhaoxi; Su, Li; Byun, Hyang-Min; Lin, Xihong; Baccarelli, Andrea; Christiani, David
    Background: In occupational settings, boilermakers are exposed to high levels of metallic fine particulate matter (PM2.5) generated during the welding process. The effect of welding PM2.5 on heart rate variability (HRV) has been described, but the relationship between PM2.5, DNA methylation, and HRV is not known. Methods: In this repeated-measures panel study, we recorded resting HRV and measured DNA methylation levels in transposable elements Alu and long interspersed nuclear element-1 (LINE-1) in peripheral blood leukocytes under ambient conditions (pre-shift) and right after a welding task (post-shift) among 66 welders. We also monitored personal PM2.5 level in the ambient environment and during the welding procedure. Results: The concentration of welding PM2.5 was significantly higher than background levels in the union hall (0.43 mg/m3 vs. 0.11 mg/m3, p < 0.0001). The natural log of transformed power in the high frequency range (ln HF) had a significantly negative association with PM2.5 exposure (β = -0.76, p = 0.035). pNN10 and pNN20 also had a negative association with PM2.5 exposure (β = -0.16%, p = 0.006 and β = -0.13%, p = 0.030, respectively). PM2.5 was positively associated with LINE-1 methylation [β = 0.79%, 5-methylcytosince (%mC), p = 0.013]; adjusted for covariates. LINE-1 methylation did not show an independent association with HRV. Conclusions: Acute decline of HRV was observed following exposure to welding PM2.5 and evidence for an epigenetic response of transposable elements to short-term exposure to high-level metal-rich particulates was reported. Electronic supplementary material The online version of this article (doi:10.1186/1471-2458-14-1279) contains supplementary material, which is available to authorized users.
  • Thumbnail Image
    Publication
    Particulate Matter, DNA Methylation in Nitric Oxide Synthase, and Childhood Respiratory Disease
    (National Institute of Environmental Health Sciences, 2012) Breton, Carrie V.; Salam, Muhammad T.; Wang, Xinhui; Byun, Hyang-Min; Siegmund, Kimberly D.; Gilliland, Frank D.
    Background: Air pollutants have been associated with childhood asthma and wheeze. Epigenetic regulation of nitric oxide synthase—the gene responsible for nitric oxide production—may be affected by air pollutants and contribute to the pathogenesis of asthma and wheeze. Objective: Our goal was to investigate the association between air pollutants, DNA methylation, and respiratory outcomes in children. Methods: Given residential address and buccal sample collection date, we estimated 7-day, 1-month, 6-month, and 1-year cumulative average \(PM_{2.5}\) and \(PM_{10}\) (particulate matter ≤ 2.5 and ≤ 10 µm aerodynamic diameter, respectively) exposures for 940 participants in the Children’s Health Study. Methylation of 12 CpG sites in three NOS (nitric oxide synthase) genes was measured using a bisulfite-polymerase chain reaction Pyrosequencing assay. Beta regression models were used to estimate associations between air pollutants, percent DNA methylation, and respiratory outcomes. Results: A 5-µg/\(m^3\) increase in \(PM_{2.5}\) was associated with a 0.20% [95% confidence interval (CI): –0.32, –0.07] to 1.0% (95% CI: –1.61, –0.56) lower DNA methylation at NOS2A position 1, 0.06% (95% CI: –0.18, 0.06) to 0.58% (95% CI: –1.13, –0.02) lower methylation at position 2, and 0.34% (95% CI: –0.57, –0.11) to 0.89% (95% CI: –1.57, –0.21) lower methylation at position 3, depending on the length of exposure and CpG locus. One-year \(PM_{2.5}\) exposure was associated with 0.33% (95% CI: 0.01, 0.65) higher in average DNA methylation of 4 loci in the NOS2A CpG island. A 5-µg/\(m^3\) increase in 7-day and 1-year \(PM_{2.5}\) was associated with 0.6% (95% CI: 0.13, 0.99) and 2.8% (95% CI: 1.77, 3.75) higher NOS3 DNA methylation. No associations were observed for NOS1. \(PM_{10}\) showed similar but weaker associations with DNA methylation in these genes. Conclusions: \(PM_{2.5}\) exposure was associated with percent DNA methylation of several CpG loci in NOS genes, suggesting an epigenetic mechanism through which these pollutants may alter production of nitric oxide.
  • Thumbnail Image
    Publication
    Mono-Allelic Retrotransposon Insertion Addresses Epigenetic Transcriptional Repression in Human Genome
    (BioMed Central, 2012) Byun, Hyang-Min; Heo, Kyu; Brennan, Kasey; Yang, Allen S
    Background: Retrotransposons have been extensively studied in plants and animals and have been shown to have an impact on human genome dynamics and evolution. Their ability to move within genomes gives retrotransposons to affect genome instability. Methods: we examined the polymorphic inserted AluYa5, evolutionary young Alu, in the progesterone receptor gene to determine the effects of Alu insertion on molecular environment. We used mono-allelic inserted cell lines which carry both Alu-present and Alu-absent alleles. To determine the epigenetic change and gene expression, we performed restriction enzyme digestion, Pyrosequencing, and Chromatin Immunoprecipitation. Results: We observed that the polymorphic insertion of evolutionally young Alu causes increasing levels of DNA methylation in the surrounding genomic area and generates inactive histone tail modifications. Consequently the Alu insertion deleteriously inactivates the neighboring gene expression. Conclusion: The mono-allelic Alu insertion cell line clearly showed that polymorphic inserted repetitive elements cause the inactivation of neighboring gene expression, bringing aberrant epigenetic changes.
  • Thumbnail Image
    Publication
    Temporal Stability of Epigenetic Markers: Sequence Characteristics and Predictors of Short-Term DNA Methylation Variations
    (Public Library of Science, 2012) Byun, Hyang-Min; Nordio, Francesco; Coull, Brent; Tarantini, Letizia; Hou, Lifang; Bonzini, Matteo; Apostoli, Pietro; Bertazzi, Pier Alberto; Baccarelli, Andrea
    Background: DNA methylation is an epigenetic mechanism that has been increasingly investigated in observational human studies, particularly on blood leukocyte DNA. Characterizing the degree and determinants of DNA methylation stability can provide critical information for the design and conduction of human epigenetic studies. Methods We measured DNA methylation in 12 gene-promoter regions (APC, p16, p53, RASSF1A, CDH13, eNOS, ET-1, IFNγ, IL-6, TNFα, iNOS, and hTERT) and 2 of non-long terminal repeat elements, i.e., L1 and Alu in blood samples obtained from 63 healthy individuals at baseline (Day 1) and after three days (Day 4). DNA methylation was measured by bisulfite-PCR-Pyrosequencing. We calculated intraclass correlation coefficients (ICCs) to measure the within-individual stability of DNA methylation between Day 1 and 4, subtracted of pyrosequencing error and adjusted for multiple covariates. Results: Methylation markers showed different temporal behaviors ranging from high (IL-6, ICC = 0.89) to low stability (APC, ICC = 0.08) between Day 1 and 4. Multiple sequence and marker characteristics were associated with the degree of variation. Density of CpG dinucleotides nearby the sequence analyzed (measured as CpG(o/e) or G+C content within ±200bp) was positively associated with DNA methylation stability. The 3′ proximity to repeat elements and range of DNA methylation on Day 1 were also positively associated with methylation stability. An inverted U-shaped correlation was observed between mean DNA methylation on Day 1 and stability. Conclusions: The degree of short-term DNA methylation stability is marker-dependent and associated with sequence characteristics and methylation levels.
  • Thumbnail Image
    Publication
    Effects of airborne pollutants on mitochondrial DNA Methylation
    (BioMed Central, 2013) Byun, Hyang-Min; Panni, Tommaso; Motta, Valeria; Hou, Lifang; Nordio, Francesco; Apostoli, Pietro; Bertazzi, Pier Alberto; Baccarelli, Andrea
    Background: Mitochondria have small mitochondrial DNA (mtDNA) molecules independent from the nuclear DNA, a separate epigenetic machinery that generates mtDNA methylation, and are primary sources of oxidative-stress generation in response to exogenous environments. However, no study has yet investigated whether mitochondrial DNA methylation is sensitive to pro-oxidant environmental exposures. Methods: We sampled 40 male participants (20 high-, 20 low-exposure) from each of three studies on airborne pollutants, including investigations of steel workers exposed to metal-rich particulate matter (measured as PM1) in Brescia, Italy (Study 1); gas-station attendants exposed to air benzene in Milan, Italy (Study 2); and truck drivers exposed to traffic-derived Elemental Carbon (EC) in Beijing, China (Study 3). We have measured DNA methylation from buffy coats of the participants. We measured methylation by bisulfite-Pyrosequencing in three mtDNA regions, i.e., the transfer RNA phenylalanine (MT-TF), 12S ribosomal RNA (MT-RNR1) gene and “D-loop” control region. All analyses were adjusted for age and smoking. Results: In Study 1, participants with high metal-rich PM1 exposure showed higher MT-TF and MT-RNR1 methylation than low-exposed controls (difference = 1.41, P = 0.002); MT-TF and MT-RNR1 methylation was significantly associated with PM1 exposure (beta = 1.35, P = 0.025); and MT-RNR1 methylation was positively correlated with mtDNA copy number (r = 0.36; P = 0.02). D-loop methylation was not associated with PM1 exposure. We found no effects on mtDNA methylation from air benzene (Study 2) and traffic-derived EC exposure (Study 3). Conclusions: Mitochondrial MT-TF and MT-RNR1 DNA methylation was associated with metal-rich PM1 exposure and mtDNA copy number. Our results suggest that locus-specific mtDNA methylation is correlated to selected exposures and mtDNA damage. Larger studies are needed to validate our observations.
  • Thumbnail Image
    Publication
    Increased Mitochondrial DNA Copy Number in Occupations Associated with Low-Dose Benzene Exposure
    (National Institute of Environmental Health Sciences, 2011) Carugno, Michele; Pesatori, Angela Cecilia; Dioni, Laura; Hoxha, Mirjam; Bollati, Valentina; Albetti, Benedetta; Bonzini, Matteo; Fustinoni, Silvia; Cocco, Pierluigi; Satta, Giannina; Zucca, Mariagrazia; Merlo, Domenico Franco; Cipolla, Massimo; Bertazzi, Pier Alberto; Byun, Hyang-Min; Baccarelli, Andrea
    Background: Benzene is an established leukemogen at high exposure levels. Although low-level benzene exposure is widespread and may induce oxidative damage, no mechanistic biomarkers are available to detect biological dysfunction at low doses. Objectives: Our goals were to determine in a large multicenter cross-sectional study whether low-level benzene is associated with increased blood mitochondrial DNA copy number (mtDNAcn, a biological oxidative response to mitochondrial DNA damage and dysfunction) and to explore potential links between mtDNAcn and leukemia-related epigenetic markers. Methods: We measured blood relative mtDNAcn by real-time polymerase chain reaction in 341 individuals selected from various occupational groups with low-level benzene exposures (> 100 times lower than the Occupational Safety and Health Administration/European Union standards) and 178 referents from three Italian cities (Genoa, Milan, Cagliari). Results: In each city, benzene-exposed participants showed higher mtDNAcn than referents: mtDNAcn was 0.90 relative units in Genoa bus drivers and 0.75 in referents (p = 0.019); 0.90 in Milan gas station attendants, 1.10 in police officers, and 0.75 in referents (p-trend = 0.008); 1.63 in Cagliari petrochemical plant workers, 1.25 in referents close to the plant, and 0.90 in referents farther from the plant (p-trend = 0.046). Using covariate-adjusted regression models, we estimated that an interquartile range increase in personal airborne benzene was associated with percent increases in mtDNAcn equal to 10.5% in Genoa (p = 0.014), 8.2% (p = 0.008) in Milan, 7.5% in Cagliari (p = 0.22), and 10.3% in all cities combined (p < 0.001). Using methylation data available for the Milan participants, we found that mtDNAcn was associated with LINE-1 hypomethylation (–2.41%; p = 0.007) and p15 hypermethylation (+15.95%, p = 0.008). Conclusions: Blood MtDNAcn was increased in persons exposed to low benzene levels, potentially reflecting mitochondrial DNA damage and dysfunction.