Person: Ord, Stephen
Loading...
Email Address
AA Acceptance Date
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Ord
First Name
Stephen
Name
Ord, Stephen
7 results
Search Results
Now showing 1 - 7 of 7
Publication Low frequency observations of linearly polarized structures in the interstellar medium near the south Galactic pole(American Astronomical Society, 2016) Lenc, E.; Gaensler, Bryan; Sun, X; Sadler, Evan; Willis, A. G.; Barry, Nicholas; Beardsley, A. P.; Bell, Marjorie; Bernardi, G.; Bowman, Jason; Briggs, Florence; Callingham, J. R.; Cappallo, R. J.; Carroll, P.; Corey, B. E.; Oliveira-Costa, A. de; Deshpande, A. A.; Dillon, J. S.; Dwarkanath, K. S.; Emrich, D.; Ewall-Wice, A.; Feng, L.; For, B.-Q.; Goeke, R.; Greenhill, Lincoln; Hancock, P.; Hazelton, B. J.; Hewitt, Justina; Hindson, L.; Hurley-Walker, N.; Johnston-Hollitt, M.; Jacobs, Daniel; Kapińska, A. D.; Kaplan, Daniel; Kasper, Justin; Kim, Andrew Hyung-Do; Kratzenberg, E.; Line, J.; Loeb, Abraham; Lonsdale, C. J.; Lynch, M. J.; McKinley, B.; McWhirter, Sarah; Mitchell, Daniel; Morales, M. F.; Morgan, E.; Morgan, James; Murphy, Teresa; Neben, A. R.; Oberoi, D.; Offringa, A. R.; Ord, Stephen; Paul, S.; Pindor, B.; Pober, J. C.; Prabu, T.; Procopio, P.; Riding, J.; Rogers, Adrianne; Roshi, A.We present deep polarimetric observations at 154 MHz with the Murchison Widefield Array (MWA), covering 625 deg^2 centered on RA=0 h, Dec=-27 deg. The sensitivity available in our deep observations allows an in-band, frequency-dependent analysis of polarized structure for the first time at long wavelengths. Our analysis suggests that the polarized structures are dominated by intrinsic emission but may also have a foreground Faraday screen component. At these wavelengths, the compactness of the MWA baseline distribution provides excellent snapshot sensitivity to large-scale structure. The observations are sensitive to diffuse polarized emission at ~54' resolution with a sensitivity of 5.9 mJy beam^-1 and compact polarized sources at ~2.4' resolution with a sensitivity of 2.3 mJy beam^-1 for a subset (400 deg^2) of this field. The sensitivity allows the effect of ionospheric Faraday rotation to be spatially and temporally measured directly from the diffuse polarized background. Our observations reveal large-scale structures (~1 deg - 8 deg in extent) in linear polarization clearly detectable in ~2 minute snapshots, which would remain undetectable by interferometers with minimum baseline lengths >110 m at 154 MHz. The brightness temperature of these structures is on average 4 K in polarized intensity, peaking at 11 K. Rotation measure synthesis reveals that the structures have Faraday depths ranging from -2 rad m^-2 to 10 rad m^-2 with a large fraction peaking at ~+1 rad m^-2. We estimate a distance of 51+/-20 pc to the polarized emission based on measurements of the in-field pulsar J2330-2005. We detect four extragalactic linearly polarized point sources within the field in our compact source survey. Based on the known polarized source population at 1.4 GHz and non-detections at 154 MHz, we estimate an upper limit on the depolarization ratio of 0.08 from 1.4 GHz to 154 MHz.Publication A high reliability survey of discrete Epoch of Reionization foreground sources in the MWA EoR0 field(Oxford University Press (OUP), 2016) Carroll, P. A.; Line, J.; Morales, M. F.; Barry, N.; Beardsley, A. P.; Hazelton, B. J.; Jacobs, D. C.; Pober, J. C.; Sullivan, I. S.; Webster, R. L.; Bernardi, G.; Bowman, J. D.; Briggs, F.; Cappallo, R. J.; Corey, B. E.; de Oliveira-Costa, A.; Dillon, J. S.; Emrich, D.; Ewall-Wice, A.; Feng, L.; Gaensler, Bryan; Goeke, R.; Greenhill, Lincoln; Hewitt, J. N.; Hurley-Walker, N.; Johnston-Hollitt, M.; Kaplan, D. L.; Kasper, Justin; Kim, HS.; Kratzenberg, E.; Lenc, E.; Loeb, Abraham; Lonsdale, C. J.; Lynch, M. J.; McKinley, B.; McWhirter, S. R.; Mitchell, D. A.; Morgan, E.; Neben, A. R.; Oberoi, D.; Offringa, A. R.; Ord, Stephen; Paul, S.; Pindor, B.; Prabu, T.; Procopio, P.; Riding, J.; Rogers, A. E. E.; Roshi, A.; Shankar, N. Udaya; Sethi, S. K.; Srivani, K. S.; Subrahmanyan, R.; Tegmark, M.; Thyagarajan, Nithyanandan; Tingay, S. J.; Trott, C. M.; Waterson, M.; Wayth, R. B.; Whitney, A. R.; Williams, A.; Williams, C. L.; Wu, C.; Wyithe, J. S. B.Detection of the Epoch of Reionization HI signal requires a precise understanding of the intervening galaxies and AGN, both for instrumental calibration and foreground removal. We present a catalogue of 7394 extragalactic sources at 182 MHz detected in the RA=0 field of the Murchison Widefield Array Epoch of Reionization observation programme. Motivated by unprecedented requirements for precision and reliability we develop new methods for source finding and selection. We apply machine learning methods to self-consistently classify the relative reliability of 9490 source candidates. A subset of 7466 are selected based on reliability class and signal-to-noise ratio criteria. These are statistically cross-matched to four other radio surveys using both position and flux density information. We find 7369 sources to have confident matches, including 90 partially resolved sources that split into a total of 192 sub-components. An additional 25 unmatched sources are included as new radio detections. The catalogue sources have a median spectral index of -0.85. Spectral flattening is seen toward lower frequencies with a median of -0.71 predicted at 182 MHz. The astrometric error is 7 arcsec. compared to a 2.3 arcmin. beam FWHM. The resulting catalogue covers approximately 1400 sq. deg. and is complete to approximately 80 mJy within half beam power. This provides the most reliable discrete source sky model available to date in the MWA EoR0 field for precision foreground subtraction.Publication The Murchison Widefield Array 21 cm Power Spectrum Analysis Methodology(American Astronomical Society, 2016) Jacobs, Daniel C.; Hazelton, B. J.; Trott, C. M.; Dillon, Joshua S.; Pindor, B.; Sullivan, I. S.; Pober, J. C.; Barry, N.; Beardsley, A. P.; Bernardi, G.; Bowman, Judd D.; Briggs, F.; Cappallo, R. J.; Carroll, P.; Corey, B. E.; de Oliveira-Costa, A.; Emrich, D.; Ewall-Wice, A.; Feng, L.; Gaensler, Bryan; Goeke, R.; Greenhill, Lincoln; Hewitt, J. N.; Hurley-Walker, N.; Johnston-Hollitt, M.; Kaplan, D. L.; Kasper, J. C.; Kim, HS; Kratzenberg, E.; Lenc, E.; Line, J.; Loeb, Abraham; Lonsdale, C. J.; Lynch, M. J.; McKinley, B.; McWhirter, S. R.; Mitchell, D. A.; Morales, M. F.; Morgan, E.; Neben, A. R.; Thyagarajan, N.; Oberoi, D.; Offringa, A. R.; Ord, Stephen; Paul, S.; Prabu, T.; Procopio, P.; Riding, J.; Rogers, A. E. E.; Roshi, A.; Shankar, N. Udaya; Sethi, Shiv K.; Srivani, K. S.; Subrahmanyan, R.; Tegmark, M.; Tingay, S. J.; Waterson, M.; Wayth, R. B.; Webster, R. L.; Whitney, A. R.; Williams, A.; Williams, C. L.; Wu, C.; Wyithe, J. S. B.We present the 21 cm power spectrum analysis approach of the Murchison Widefield Array Epoch of Reionization project. In this paper, we compare the outputs of multiple pipelines for the purpose of validating statistical limits cosmological hydrogen at redshifts between 6 and 12. Multiple, independent, data calibration and reduction pipelines are used to make power spectrum limits on a fiducial night of data. Comparing the outputs of imaging and power spectrum stages highlights differences in calibration, foreground subtraction and power spectrum calculation. The power spectra found using these different methods span a space defined by the various tradeoffs between speed, accuracy, and systematic control. Lessons learned from comparing the pipelines range from the algorithmic to the prosaically mundane; all demonstrate the many pitfalls of neglecting reproducibility. We briefly discuss the way these different methods attempt to handle the question of evaluating a significant detection in the presence of foregrounds.Publication First limits on the 21 cm power spectrum during the Epoch of X-ray heating(Oxford University Press (OUP), 2016) Ewall-Wice, A.; Dillon, Joshua S.; Hewitt, J. N.; Loeb, Abraham; Mesinger, A.; Neben, A. R.; Offringa, A. R.; Tegmark, M.; Barry, N.; Beardsley, A. P.; Bernardi, G.; Bowman, Judd D.; Briggs, F.; Cappallo, R. J.; Carroll, P.; Corey, B. E.; de Oliveira-Costa, A.; Emrich, D.; Feng, L.; Gaensler, Bryan; Goeke, R.; Greenhill, Lincoln; Hazelton, B. J.; Hurley-Walker, N.; Johnston-Hollitt, M.; Jacobs, Daniel C.; Kaplan, D. L.; Kasper, Justin; Kim, HS; Kratzenberg, E.; Lenc, E.; Line, J.; Lonsdale, C. J.; Lynch, M. J.; McKinley, B.; McWhirter, S. R.; Mitchell, D. A.; Morales, M. F.; Morgan, E.; Thyagarajan, Nithyanandan; Oberoi, D.; Ord, Stephen; Paul, S.; Pindor, B.; Pober, J. C.; Prabu, T.; Procopio, P.; Riding, J.; Rogers, A. E. E.; Roshi, A.; Shankar, N. Udaya; Sethi, Shiv K.; Srivani, K. S.; Subrahmanyan, R.; Sullivan, I. S.; Tingay, S. J.; Trott, C. M.; Waterson, M.; Wayth, R. B.; Webster, R. L.; Whitney, A. R.; Williams, A.; Williams, C. L.; Wu, C.; Wyithe, J. S. B.We present first results from radio observations with the Murchison Widefield Array seeking to constrain the power spectrum of 21 cm brightness temperature fluctuations between the redshifts of 11.6 and 17.9 (113 and 75 MHz). Three hours of observations were conducted over two nights with significantly different levels of ionospheric activity. We use these data to assess the impact of systematic errors at low frequency, including the ionosphere and radio-frequency interference, on a power spectrum measurement. We find that after the 1-3 hours of integration presented here, our measurements at the Murchison Radio Observatory are not limited by RFI, even within the FM band, and that the ionosphere does not appear to affect the level of power in the modes that we expect to be sensitive to cosmology. Power spectrum detections, inconsistent with noise, due to fine spectral structure imprinted on the foregrounds by reflections in the signal-chain, occupy the spatial Fourier modes where we would otherwise be most sensitive to the cosmological signal. We are able to reduce this contamination using calibration solutions derived from autocorrelations so that we achieve an sensitivity of 104 mK on comoving scales k≲0.5hMpc−1. This represents the first upper limits on the 21 cm power spectrum fluctuations at redshifts 12≲z≲18 but is still limited by calibration systematics. While calibration improvements may allow us to further remove this contamination, our results emphasize that future experiments should consider carefully the existence of and their ability to calibrate out any spectral structure within the EoR window.Publication The Importance of Wide-Field Foreground Removal for 21 Cm Cosmology: A Demonstration With Early MWA Epoch of Reionization Observations(American Astronomical Society, 2016) Pober, J. C.; Hazelton, B. J.; Beardsley, A. P.; Barry, N. A.; Martinot, Z. E.; Sullivan, I. S.; Morales, M. F.; Bell, M. E.; Bhat, N. D. R.; Bowman, J. D.; Briggs, F.; Cappallo, R. J.; Carroll, P.; Corey, B. E.; de Oliveira-Costa, A.; Deshpande, A. A.; Dillon, Joshua. S.; Emrich, D.; Ewall-Wice, A. M.; Feng, L.; Goeke, R.; Hewitt, J. N.; Hindson, L.; Hurley-Walker, N.; Jacobs, D. C.; Johnston-Hollitt, M.; Kaplan, D. L.; Kim, Han-Seek; Kittiwisit, P.; Kratzenberg, E.; Kudryavtseva, N.; Lenc, E.; Line, J.; Loeb, Abraham; Lonsdale, C. J.; Lynch, M. J.; McKinley, B.; McWhirter, S. R.; Mitchell, D. A.; Morgan, E.; Neben, A. R.; Oberoi, D.; Offringa, A. R.; Ord, Stephen; Paul, Sourabh; Pindor, B.; Prabu, T.; Procopio, P.; Riding, J.; Rogers, A. E. E.; Roshi, A.; Sethi, Shiv K.; Shankar, N. Udaya; Srivani, K. S.; Subrahmanyan, R.; Tegmark, M.; Thyagarajan, Nithyanandan; Tingay, S. J.; Trott, C. M.; Waterson, M.; Wayth, R. B.; Webster, R. L.; Whitney, A. R.; Williams, A.; Williams, C. L.; Wyithe, J. S. B.; Bernardi, Gianni; Greenhill, Lincoln; Kasper, JustinIn this paper we present observations, simulations, and analysis demonstrating the direct connection between the location of foreground emission on the sky and its location in cosmological power spectra from interferometric redshifted 21 cm experiments. We begin with a heuristic formalism for understanding the mapping of sky coordinates into the cylindrically averaged power spectra measurements used by 21 cm experiments, with a focus on the effects of the instrument beam response and the associated sidelobes. We then demonstrate this mapping by analyzing power spectra with both simulated and observed data from the Murchison Widefield Array. We find that removing a foreground model which includes sources in both the main field-of-view and the first sidelobes reduces the contamination in high k_parallel modes by several percent relative to a model which only includes sources in the main field-of-view, with the completeness of the foreground model setting the principal limitation on the amount of power removed. While small, a percent-level amount of foreground power is in itself more than enough to prevent recovery of any EoR signal from these modes. This result demonstrates that foreground subtraction for redshifted 21 cm experiments is truly a wide-field problem, and algorithms and simulations must extend beyond the main instrument field-of-view to potentially recover the full 21 cm power spectrum.Publication CHIPS: The Cosmological HI Power Spectrum Estimator(American Astronomical Society, 2016) Trott, Cathryn; Pindor, Bart; Procopio, Pietro; Wayth, Randall; Mitchell, Daniel; McKinley, Benjamin; Tingay, Steven; Barry, N.; Beardsley, A.; Bernardi, G.; Bowman, Judd; Briggs, F.; Cappallo, R.; Carroll, P.; de Oliveira-Costa, A.; Dillon, Joshua; Ewall-Wice, A.; Feng, L.; Greenhill, Lincoln; Hazelton, B.; Hewitt, J.; Hurley-Walker, N.; Johnston-Hollitt, M.; Jacobs, Daniel; Kaplan, D.; Kim, HS; Lenc, E.; Line, J.; Loeb, Abraham; Lonsdale, C.; Morales, M.; Morgan, E.; Neben, A.; Thyagarajan, Nithyanandan; Oberoi, D.; Offringa, A.; Ord, Stephen; Paul, S.; Pober, J.; Prabu, T.; Riding, J.; Shankar, N.; Sethi, Shiv; Srivani, K.; Subrahmanyan, R.; Sullivan, I.; Tegmark, M.; Webster, R.; Williams, A.; Williams, C.; Wu, C.; Wyithe, J.Detection of the cosmological neutral hydrogen signal from the Epoch of Reionization, and estimation of its basic physical parameters, is the principal scientific aim of many current low-frequency radio telescopes. Here we describe the Cosmological HI Power Spectrum Estimator (CHIPS), an algorithm developed and implemented with data from the Murchison Widefield Array (MWA), to compute the two-dimensional and spherically-averaged power spectrum of brightness temperature fluctuations. The principal motivations for CHIPS are the application of realistic instrumental and foreground models to form the optimal estimator, thereby maximising the likelihood of unbiased signal estimation, and allowing a full covariant understanding of the outputs. CHIPS employs an inverse-covariance weighting of the data through the maximum likelihood estimator, thereby allowing use of the full parameter space for signal estimation ("foreground suppression"). We describe the motivation for the algorithm, implementation, application to real and simulated data, and early outputs. Upon application to a set of 3 hours of data, we set a 2σ upper limit on the EoR dimensionless power at k=0.05~h.Mpc−1 of Δ2k<7.6×104~mK2 in the redshift range z=[6.2−6.6], consistent with previous estimates.Publication Enabling a High Throughput Real Time Data Pipeline for a Large Radio Telescope Array with GPUs(Elsevier, 2010) Pfister, Hanspeter; Edgar, Richard G; Mitchell, Daniel; Ord, Stephen; Greenhill, Lincoln; Clark, Michael A.; Dale, Kevin; Wayth, Randall B.The Murchison Widefield Array (MWA) is a next-generation radio telescope currently under construction in the remote Western Australia Outback. Raw data will be generated continuously at 5 GiB s\(^{−1}\), grouped into 8 s cadences. This high throughput motivates the development of on-site, real time processing and reduction in preference to archiving, transport and off-line processing. Each batch of 8 s data must be completely reduced before the next batch arrives. Maintaining real time operation will require a sustained performance of around 2.5 TFLOP s\(^{−1}\) (including convolutions, FFTs, interpolations and matrix multiplications). We describe a scalable heterogeneous computing pipeline implementation, exploiting both the high computing density and FLOP-per-Watt ratio of modern GPUs. The architecture is highly parallel within and across nodes, with all major processing elements performed by GPUs. Necessary scatter-gather operations along the pipeline are loosely synchronized between the nodes hosting the GPUs. The MWA will be a frontier scientific instrument and a pathfinder for planned peta- and exascale facilities.