Person: Pereira, Luis
Loading...
Email Address
AA Acceptance Date
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Pereira
First Name
Luis
Name
Pereira, Luis
Search Results
Now showing 1 - 2 of 2
Publication Stereoselectivity of Isoflurane in Adhesion Molecule Leukocyte Function-Associated Antigen-1(Public Library of Science, 2014) Bu, Weiming; Pereira, Luis; Eckenhoff, Roderic G.; Yuki, KoichiBackground: Isoflurane in clinical use is a racemate of S- and R-isoflurane. Previous studies have demonstrated that the effects of S-isoflurane on relevant anesthetic targets might be modestly stronger (less than 2-fold) than R-isoflurane. The X-ray crystallographic structure of the immunological target, leukocyte function-associated antigen-1 (LFA-1) with racemic isoflurane suggested that only S-isoflurane bound specifically to this protein. If so, the use of specific isoflurane enantiomers may have advantage in the surgical settings where a wide range of inflammatory responses is expected to occur. Here, we have further tested the hypothesis that isoflurane enantioselectivity is apparent in solution binding and functional studies. Methods: First, binding of isoflurane enantiomers to LFA-1 was studied using 1-aminoanthracene (1-AMA) displacement assays. The binding site of each enantiomer on LFA-1 was studied using the docking program GLIDE. Functional studies employed the flow-cytometry based ICAM binding assay. Results: Both enantiomers decreased 1-AMA fluorescence signal (at 520 nm), indicating that both competed with 1-AMA and bound to the αL I domain. The docking simulation demonstrated that both enantiomers bound to the LFA-1 “lovastatin site.” ICAM binding assays showed that S-isoflurane inhibited more potently than R-isoflurane, consistent with the result of 1-AMA competition assay. Conclusions: In contrast with the x-ray crystallography, both enantiomers bound to and inhibited LFA-1. S-isoflurane showed slight preference over R-isoflurane.Publication Safety, pharmacokinetics, and preliminary assessment of efficacy of mecasermin (recombinant human IGF-1) for the treatment of Rett syndrome(Proceedings of the National Academy of Sciences, 2014) Khwaja, O. S.; Ho, E.; Barnes, K. V.; O, H. M.; Pereira, Luis; Finkelstein, Y.; Nelson, Charles; Vogel-Farley, V.; DeGregorio, G.; Holm, Ingrid; Khatwa, Umakanth; Kapur, Kush; Alexander, Mark; Finnegan, D. M.; Cantwell, N. G.; Walco, A. C.; Rappaport, Leonard; Gregas, M.; Fichorova, Raina; Shannon, M. W.; Sur, M.; Kaufmann, Walter ERett syndrome (RTT) is a severe X-linked neurodevelopmental disorder mainly affecting females and is associated with mutations in MECP2, the gene encoding methyl CpG-binding protein 2. Mouse models suggest that recombinant human insulin-like growth factor 1 (IGF-1) (rhIGF1) (mecasermin) may improve many clinical features. We evaluated the safety, tolerability, and pharmacokinetic profiles of IGF-1 in 12 girls with MECP2 mutations (9 with RTT). In addition, we performed a preliminary assessment of efficacy using automated cardiorespiratory measures, EEG, a set of RTT-oriented clinical assessments, and two standardized behavioral questionnaires. This phase 1 trial included a 4-wk multiple ascending dose (MAD) (40–120 μg/kg twice daily) period and a 20-wk open-label extension (OLE) at the maximum dose. Twelve subjects completed the MAD and 10 the entire study, without evidence of hypoglycemia or serious adverse events. Mecasermin reached the CNS compartment as evidenced by the increase in cerebrospinal fluid IGF-1 levels at the end of the MAD. The drug followed nonlinear kinetics, with greater distribution in the peripheral compartment. Cardiorespiratory measures showed that apnea improved during the OLE. Some neurobehavioral parameters, specifically measures of anxiety and mood also improved during the OLE. These improvements in mood and anxiety scores were supported by reversal of right frontal alpha band asymmetry on EEG, an index of anxiety and depression. Our data indicate that IGF-1 is safe and well tolerated in girls with RTT and, as demonstrated in preclinical studies, ameliorates certain breathing and behavioral abnormalities.