Person: Rice, James
Email Address
AA Acceptance Date
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
First Name
Name
Search Results
Publication Dynamic Rupture through a Branched Fault Configuration at Yucca Mountain, and Resulting Ground Motions
(Seismological Society of America, 2010) Templeton, Elizabeth L.; Bhat, Harsha S.; Dmowska, Renata; Rice, JamesWe seek to characterize the likelihood of multiple fault activation along a branched normal-fault system during earthquake rupture using dynamic finite element analyses. This is motivated by the normal faults in the vicinity of Yucca Mountain, Nevada, a potential site for a high-level radioactive waste repository. The Solitario Canyon fault (SCF), a north–south trending fault located approximately 1 km west of the crest of Yucca Mountain, is the most active of these faults. Based on the results of previous branching work by Kame et al. (2003), branch activation in the hanging wall of a normal fault such as the SCF may be possible for fast ruptures propagating near the Rayleigh-wave speed at the branch junction. Dynamic branch activation along a splay of the SCF during a seismic event could have important effects on the rupture velocity and resulting ground motions at the proposed repository site. We consider elastic as well as a pressure-dependent elastic–plastic response of the off-fault material. We find that based on the regional stress state in the area, the only likely candidates for branch activation in the hanging wall of the SCF are more steeply westward dipping intrablock splay faults. We also find that the rupture velocity for an earthquake propagating updip along the SCF must reach supershear speeds in order for dynamic branch activation to occur. Branch activation can have significant effects on the ground motions at the proposed repository site, 1 km away from the SCF beneath the crest of Yucca Mountain, causing the repository site to experience a second peak in large vertical particle velocities. Elastic–plastic response near the branch junction reduces peak ground velocities and accelerations at the proposed repository site.
Publication Slow Slip Predictions Based on Granit and Gabbro Friction Data Compared to GPS Measurements in Northern Cascadia
(American Geophysical Union, 2009) Yajing, Liu; Rice, JamesFor episodic slow slip transients in subduction zones, a large uncertainty in comparing surface deformations predicted by forward modeling based on rate and state friction to GPS measurements lies in our limited knowledge of the frictional properties and fluid pore pressure along shallow subduction faults. In this study, we apply the laboratory rate and state friction data of granite and gabbro gouges under hydrothermal conditions to a Cascadia-like 2-D model to produce spontaneous aseismic transients, and we compare the resulting intertransient and transient surface deformations to GPS observations along the northern Cascadia margin. An inferred region along dip of elevated fluid pressure is constrained by seismological observations where available and by thermal and petrological models for the Cascadia and SW Japan subduction zones. For the assumed friction parameters a and a − b profiles, we search the model parameter space, by varying the level of effective normal stress , characteristic slip distance L in the source areas of transients, and the fault width under , to identify simulation cases that produce transients of total aseismic slip and recurrence interval similar to the observed 20–30 mm and 1–2 years, respectively, in northern Cascadia. Using a simple planar fault geometry and extrapolating the 2-D fault slip to a 3-D distribution, we find that the friction data for gabbro gouge, a better representation of the seafloor, fit GPS observations of transient deformation in northern Cascadia much better than do the granite data, which, for lack of a suitable alternative, have been the basis for most previous modeling.
Publication Modeling Slope Instability as Shear Rupture Propagation in a Saturated Porous Medium
(Springer Verlag, 2009) Viesca, Robert Christian; Rice, JamesWhen a region of intense shear in a slope is much thinner than other relevant geometric lengths, this shear failure may be approximated as localized slip, as in faulting, with strength determined by frictional properties of the sediment and effective stress normal to the failure surface. Peak and residual frictional strengths of submarine sediments indicate critical slope angles well above those of most submarine slopes—in contradiction to abundant failures. Because deformation of sediments is governed by effective stress, processes affecting pore pressures are a means of strength reduction. However, common methods of exami ning slope stability neglect dynamically variable pore pressure during failure. We examine elastic-plastic models of the capped Drucker-Prager type and derive approximate equations governing pore pressure about a slip surface when the adjacent material may deform plastically. In the process we identify an elastic-plastic hydraulic diffusivity with an evolving permeability and plastic storage term analogous to the elastic term of traditional poroelasticity. We also examine their application to a dynamically propagating subsurface rupture and find indications of downslope directivity.
Publication Thermo- and Hydro-mechanical Processes along Faults during Rapid Slip
(CRC Press, 2009) Rice, James; Dunham, Eric M.; Noda, HiroyukiField observations of maturely slipped faults show a generally broad zone of damage by cracking and granulation. Nevertheless, large shear deformation, and therefore heat generation, in individual earthquakes takes place with extreme localization to a zone <1–5 mm wide within a finely granulated fault core. Relevant fault weakening processes during large crustal events are therefore likely to be thermal. Further, given the porosity of the damage zones, it seems reasonable to assume groundwater presence. It is suggested that the two primary dynamic weak- ening mechanisms during seismic slip, both of which are expected to be active in at least the early phases of nearly all crustal events, are then as follows: (1) Flash heating at highly stressed frictional micro-contacts, and (2) Thermal pressurization of fault-zone pore fluid. Both have characteristics which promote extreme localization of shear. Macroscopic fault melting will occur only in cases for which those processes, or others which may sometimes become active at large enough slip (e.g., thermal decomposition, silica gelation), have not sufficiently reduced heat generation and thus limited temperature rise. Spontaneous dynamic rupture modeling, using procedures that embody mechanisms (1) and (2), shows how faults can be statically strong yet dynamically weak, and oper- ate under low overall driving stress, in a manner that generates negligible heat and meets major seismic constraints on slip, stress drop, and self-healing rupture mode.
Publication Earthquake Ruptures with Thermal Weakening and the Operation of Major Faults at Low Overall Stress Levels
(American Geophysical Union, 2009) Noda, Hiroyuki; Dunham, Eric M.; Rice, JamesWe model ruptures on faults that weaken in response to flash heating of microscopic asperity contacts (within a rate-and-state framework) and thermal pressurization of pore fluid. These are arguably the primary weakening mechanisms on mature faults at coseismic slip rates, at least prior to large slip accumulation. Ruptures on strongly rate-weakening faults take the form of slip pulses or cracks, depending on the background stress. Self-sustaining slip pulses exist within a narrow range of stresses: below this range, artificially nucleated ruptures arrest; above this range, ruptures are crack-like. Natural quakes will occur as slip pulses if faults operate at the minimum stress required for propagation. Using laboratory-based flash heating parameters, propagation is permitted when the ratio of shear to effective normal stress on the fault is 0.2–0.3; this is mildly influenced by reasonable choices of hydrothermal properties. The San Andreas and other major faults are thought to operate at such stress levels. While the overall stress level is quite small, the peak stress at the rupture front is consistent with static friction coefficients of 0.6–0.9. Growing slip pulses have stress drops of ~3 MPa; slip and the length of the slip pulse increase linearly with propagation distance at ~0.14 and ~30 m/km, respectively. These values are consistent with seismic and geologic observations. In contrast, cracks on faults of the same rheology have stress drops exceeding 20 MPa, and slip at the hypocenter increases with distance at ~1 m/km.
Publication Thermal Pressurization and Onset of Melting in Fault Zones
(American Geophysical Union, 2006) Rempel, Alan W.; Rice, JamesWe examine how frictional heating drives the evolution of temperature, strength, and fracture energy during earthquake slip. For small slip distances, heat and pore fluid are unable to escape the shearing fault core, and the behavior is well approximated by simple analytical models that neglect any transport. Following large slip distances, the finite width of the shear zone is small compared to the thicknesses of the thermal and hydrological boundary layers, and the fault behavior approaches that predicted for the idealized case of slip on a plane. To evaluate the range in which the predictions of these two sets of approximations are valid, we develop a model that describes how frictional dissipation within a finite shear zone drives heat and mass transport through the surrounding static gouge. With realistic parameter values and slips greater than a few centimeters, the subsequent evolution of strength and fracture energy are approximated well by the planar slip model. However, the temperature evolution is much more sensitive to the finite shear zone thickness, and the ultimate temperature rise tends to be intermediate between that predicted for the two simplified cases. We explore the range of conditions necessary for melting to begin and focus in particular on the potential role of fault zone damage in facilitating fluid transport and promoting larger temperature increases. We discuss how the apparent scarcity of exhumed pseudotachylytes places constraints on some of the more uncertain fault zone parameters.
Publication Does Shear Heating of Pore Fluid Contribute to Earthquake Nucleation?
(American Geophysical Union, 2006) Segall, Paul; Rice, JamesEarthquake nucleation requires reduction of frictional strength (\tau = \mu (\sigma - p) ) with slip or slip rate, where (\mu, \sigma_n), and (p) are the friction coefficient, normal stress, and fluid pressure, respectively. For rate state (\mu) at fixed ((\sigma - p)), instabilities can occur when (d \mu_{ss}/dv<0), where (\mu_{ss}) is the steady state friction and (v) is slip rate. Shear heating increases (p) and, if dilatancy and pore pressure diffusion are limited, will cause (\tau) to decrease. We examine how frictional weakening, shear heating, and dilatancy determine stability in simplified fault models. Mature faults have a thin (<1 mm) shear zone on which slip is concentrated, embedded within a (∼0.1) m wide fault core with permeability of order (10^{−21}) to (10^{−19} m^2), surrounded by rock of variable but higher permeability. Faults with (d \mu_{ss}/dv>0) are linearly stable at all wavelengths to adiabatic perturbations when v is near a plate rate if the wall rock permeability exceeds a critical value that is orders of magnitude less than inferred. Thus shear heating alone cannot then nucleate unstable slip; frictional weakening is required. However, shear heating can produce inertial instability on velocity strengthening faults following strong stress perturbations. On faults with (d \mu_{ss}/dv<0), shear heating increases pore pressure faster than is dissipated by Darcy flow at slip speeds of order (1) mm (s^{−1}). For faults bounding half-spaces with uniform thermal and hydraulic properties, (\mu \dot{p}) exceeds (\dot{\mu}(\sigma - p)) during nucleation for slip speeds in excess of (10^{−2}) to (10^1) mm (s^{−1}), depending on parameters chosen. Thus thermal effects are likely to dominate late in the nucleation process, well before seismic waves are radiated, as well as during fast seismic slip. By the time shear heating effects dominate, inertial slip is imminent ((∼10^{−1} s)), so that time-to-failure calculations baseed on rate state friction are not biased by thermal pressurization.
Publication Heating and Weakening of Faults During Earthquake Slip
(American Geophysical Union, 2006) Rice, JamesField observations of mature crustal faults suggest that slip in individual events occurs primarily within a thin shear zone, <1–5 mm, within a finely granulated, ultracataclastic fault core. Relevant weakening processes in large crustal events are therefore suggested to be thermal, and to involve the following: (1) thermal pressurization of pore fluid within and adjacent to the deforming fault core, which reduces the effective normal stress and hence also the shear strength for a given friction coefficient and (2) flash heating at highly stressed frictional microcontacts during rapid slip, which reduces the friction coefficient. (Macroscopic melting, or possibly gel formation in silica-rich lithologies, may become important too at large enough slip.) Theoretical modeling of mechanisms 1 and 2 is constrained with lab-determined hydrologic and poroelastic properties of fault core materials and lab friction studies at high slip rates. Predictions are that strength drop should often be nearly complete at large slip and that the onset of melting should be precluded over much (and, for small enough slip, all) of the seismogenic zone. A testable prediction is of the shear fracture energies that would be implied if actual earthquake ruptures were controlled by those thermal mechanisms. Seismic data have been compiled on the fracture energy of crustal events, including its variation with slip in an event. It is plausibly described by theoretical predictions based on the above mechanisms, within a considerable range of uncertainty of parameter choices, thus allowing the possibility that such thermal weakening prevails in the Earth.
Publication Finite Element Simulations of Dynamic Shear Rupture Experiments and Dynamic Path Selection along Kinked and Branched Faults
(American Geophysical Union, 2009) Templeton, Elizabeth L.; Baudet, Aurélie; Bhat, Harsha S.; Dmowska, Renata; Rice, James; Rosakis, Ares J.; Rousseau, Carl-ErnstWe analyze the nucleation and propagation of shear cracks along nonplanar, kinked, and branched fault paths corresponding to the configurations used in recent laboratory fracture studies by Rousseau and Rosakis (2003, 2009). The aim is to reproduce numerically those shear rupture experiments and from that provide an insight into processes which are active when a crack, initially propagating in mode II along a straight path, interacts with a bend in the fault or a branching junction. The experiments involved impact loading of thin Homalite-100 (a photoelastic polymer) plates, which had been cut along bent or branched paths and weakly glued back together everywhere except along a starter notch near the impact site. Strain gage recordings and high-speed photography of isochromatic lines provided characterization of the transient deformation fields associated with the impact and fracture propagation. We found that dynamic explicit 2-D plane-stress finite element analyses with a simple linear slip-weakening description of cohesive and frictional strength of the bonded interfaces can reproduce the qualitative rupture behavior past the bend and branch junctions in most cases and reproduce the principal features revealed by the photographs of dynamic isochromatic line patterns. The presence of a kink or branch can cause an abrupt change in rupture propagation velocity. Additionally, the finite element results allow comparison between total slip accumulated along the main and inclined fault segments. We found that slip along inclined faults can be substantially less than slip along the main fault, and the amount depends on the branch angle and kink or branch configuration.
Publication Stability and Localization of Rapid Shear in Fluid-Saturated Fault Gouge: 1. Linearized Stability Analysis
(Wiley-Blackwell, 2014) Rice, James; Rudnicki, John W.; Platt, JohnField observations of major earthquake fault zones show that shear deformation is often confined to principal slipping zones that may be of order 1–100 μm wide, located within a broader gouge layer of order 10–100 mm wide. This paper examines the possibility that the extreme strain localization observed may be due to the coupling of shear heating, thermal pressurization, and diffusion. In the absence of a stabilizing mechanism shear deformation in a continuum analysis will collapse to an infinitesimally thin zone. Two possible stabilizing mechanisms, studied in this paper, are rate-strengthening friction and dilatancy. For rate-strengthening friction alone, a linear stability analysis shows that uniform shear of a gouge layer is unstable for perturbations exceeding a critical wavelength. Using this critical wavelength we predict a width for the localized zone as a function of the gouge properties. Taking representative parameters for fault gouge at typical centroidal depths of crustal seismogenic zones, we predict localized zones of order 5–40 μm wide, roughly consistent with field and experimental observations. For dilatancy alone, linearized strain rate perturbations with a sufficiently large wavelength will undergo transient exponential growth before decaying back to uniform shear. The total perturbation strain accumulated during this transient strain rate localization is shown to be largely controlled by a single dimensionless parameter E, which is a measure of the dilatancy of the gouge material due to an increase in strain rate.