Person: Graham, Robert
Loading...
Email Address
AA Acceptance Date
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Graham
First Name
Robert
Name
Graham, Robert
Search Results
Now showing 1 - 2 of 2
Publication The temporal dynamics of the tracheal microbiome in tracheostomised patients with and without lower respiratory infections(Public Library of Science, 2017) Pérez-Losada, Marcos; Graham, Robert; Coquillette, Madeline; Jafarey, Amenah; Castro-Nallar, Eduardo; Aira, Manuel; Freishtat, Robert J.; Mansbach, JonathanBackground: Airway microbiota dynamics during lower respiratory infection (LRI) are still poorly understood due, in part, to insufficient longitudinal studies and lack of uncontaminated lower airways samples. Furthermore, the similarity between upper and lower airway microbiomes is still under debate. Here we compare the diversity and temporal dynamics of microbiotas directly sampled from the trachea via tracheostomy in patients with (YLRI) and without (NLRI) lower respiratory infections. Methods: We prospectively collected 127 tracheal aspirates across four consecutive meteorological seasons (quarters) from 40 patients, of whom 20 developed LRIs and 20 remained healthy. All aspirates were collected when patients had no LRI. We generated 16S rRNA-based microbial profiles (~250 bp) in a MiSeq platform and analyzed them using Mothur and the SILVAv123 database. Differences in microbial diversity and taxon normalized (via negative binomial distribution) abundances were assessed using linear mixed effects models and multivariate analysis of variance. Results and discussion Alpha-diversity (ACE, Fisher and phylogenetic diversity) and beta-diversity (Bray-Curtis, Jaccard and Unifrac distances) indices varied significantly (P<0.05) between NLRI and YLRI microbiotas from tracheostomised patients. Additionally, Haemophilus was significantly (P = 0.009) more abundant in YLRI patients than in NLRI patients, while Acinetobacter, Corynebacterium and Pseudomonas (P<0.05) showed the inverse relationship. We did not detect significant differences in diversity and bacterial abundance among seasons. This result disagrees with previous evidence suggesting seasonal variation in airway microbiotas. Further study is needed to address the interaction between microbes and LRI during times of health and disease.Publication Leveraging pediatric PROMIS item banks to assess physical functioning in children at risk for severe functional loss(Springer International Publishing, 2017) Rodday, Angie Mae; Graham, Robert; Weidner, Ruth Ann; Rothrock, Nan E.; Dewalt, Darren A.; Parsons, Susan K.Background: Pediatric neuromuscular illnesses often result in decreased health-related quality of life (HRQL), notably in physical functioning. Generic HRQL measures have been developed for use in general populations, but may not adequately assess patients with severe functional loss. To address this measurement gap, we created two custom parent-proxy physical functioning short forms for use among children at risk for low levels of functioning, using pediatric Patient Reported Outcomes Measurement Information System (PROMIS) item banks for Upper Extremity and Mobility. Methods: Two custom short forms from PROMIS Upper Extremity (13 items) and Mobility (13 items) parent-proxy item banks were created and administered to parents of children (ages 5 – 22 years) enrolled in an integrated care program for management of chronic respiratory insufficiency, largely due to neuromuscular illnesses. Standardized PROMIS T-scores have a mean of 50 (SD = 10); higher scores indicate better functioning. Physicians rated clinical severity. Single proxy-rated items on mental and physical health from the Child Health Rating Inventories (CHRIs) global health scale were completed by parents. Psychometric properties, including known groups comparisons, were explored. Results: Fifty-seven parents completed the parent-proxy custom PROMIS short forms. The mean Upper Extremity T-score was 21 (SD = 13); the mean Mobility T-score was 22 (SD = 11). Some participants scored at the measurement floor; two items on assistive devices did not perform well in this sample and were excluded from the Mobility T-score. Known groups comparisons showed that those with lower clinical severity had better median Upper Extremity (22 vs. 14, p < 0.001) and Mobility (28 vs. 16, p = 0.004) function than those with worse clinical severity. Both Upper Extremity and Mobility T-scores were higher in the subgroups defined by better physical and mental health, as measured by the CHRIs. Conclusions: Upper Extremity and Mobility T-scores were nearly three standard deviations below the PROMIS pediatric calibration population mean. Preliminary psychometrics demonstrated the potential to more accurately measure lower physical functioning using items from PROMIS item banks. However, some participants scored at the measurement floor despite targeting items at the lower end of the scale. Further short form refinement, enrichment of the item banks, and larger-scale field testing are needed.