Person:
Ramadhar, Timothy R.

Loading...
Profile Picture

Email Address

AA Acceptance Date

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Ramadhar

First Name

Timothy R.

Name

Ramadhar, Timothy R.

Search Results

Now showing 1 - 3 of 3
  • Thumbnail Image
    Publication
    Tundrenone: An Atypical Secondary Metabolite from Bacteria with Highly Restricted Primary Metabolism
    (American Chemical Society, 2018) Puri, Aaron W.; Mevers, Emily; Ramadhar, Timothy R.; Petras, Daniel; Liu, Darren; Piel, Jörn; Dorrestein, Pieter C.; Greenberg, E. Peter; Lidstrom, Mary E.; Clardy, Jon
    Methane-oxidizing bacteria, aerobes that utilize methane as their sole carbon and energy source, are being increasingly studied for their environmentally significant ability to remove methane from the atmosphere. Their genomes indicate that they also have a robust and unusual secondary metabolism. Bioinformatic analysis of the Methylobacter tundripaludum genome identified biosynthetic gene clusters for several intriguing metabolites, and this report discloses the structural and genetic characterization of tundrenone, one of these metabolites. Tundrenone is a highly oxidized metabolite that incorporates both a modified bicyclic chorismate-derived fragment and a modified lipid tail bearing a β,γ-unsaturated α-hydroxy ketone. Tundrenone has been genetically linked to its biosynthetic gene cluster, and quorum sensing activates its production. M. tundripaludum’s genome and tundrenone’s discovery support the idea that additional studies of methane-oxidizing bacteria will reveal new naturally occurring molecular scaffolds and the biosynthetic pathways that produce them.
  • Thumbnail Image
    Publication
    Homodimericin A: A Complex Hexacyclic Fungal Metabolite
    (American Chemical Society, 2016) Mevers, Emily; Saurí, Josep; Liu, Yizhou; Moser, Arvin; Ramadhar, Timothy R.; Varlan, Maria; Williamson, R. Thomas; Martin, Gary E.; Clardy, Jon
    Microbes sense and respond to their environment with small molecules, and discovering these molecules and identifying their functions informs chemistry, biology, and medicine. As part of a study of molecular exchanges between termite-associated actinobacteria and pathogenic fungi, we uncovered a remarkable fungal metabolite, homodimericin A, which is strongly upregulated by the bacterial metabolite bafilomycin C1. Homodimericin A is a hexacyclic polyketide with a carbon backbone containing eight contiguous stereogenic carbons in a C20 hexacyclic core. Only half of its carbon atoms have an attached hydrogen, which presented a significant challenge for NMR-based structural analysis. In spite of its microbial production and rich stereochemistry, homodimericin A occurs naturally as a racemic mixture. A plausible nonenzymatic reaction cascade leading from two identical achiral monomers to homodimericin A is presented, and homodimericin A’s formation by this path, a six-electron oxidation, could be a response to oxidative stress triggered by bafilomycin C1.
  • Thumbnail Image
    Publication
    Analysis of rapidly synthesized guest-filled porous complexes with synchrotron radiation: practical guidelines for the crystalline sponge method
    (International Union of Crystallography, 2015) Ramadhar, Timothy R.; Zheng, Shao-Liang; Chen, Yu-Sheng; Clardy, Jon
    A detailed set of synthetic and crystallographic guidelines for the crystalline sponge method based upon the analysis of expediently synthesized crystal sponges using third-generation synchrotron radiation are reported. The procedure for the synthesis of the zinc-based metal–organic framework used in initial crystal sponge reports has been modified to yield competent crystals in 3 days instead of 2 weeks. These crystal sponges were tested on some small molecules, with two being unexpectedly difficult cases for analysis with in-house diffractometers in regard to data quality and proper space-group determination. These issues were easily resolved by the use of synchrotron radiation using data-collection times of less than an hour. One of these guests induced a single-crystal-to-single-crystal transformation to create a larger unit cell with over 500 non-H atoms in the asymmetric unit. This led to a non-trivial refinement scenario that afforded the best Flack x absolute stereochemical determination parameter to date for these systems. The structures did not require the use of PLATON/SQUEEZE or other solvent-masking programs, and are the highest-quality crystalline sponge systems reported to date where the results are strongly supported by the data. A set of guidelines for the entire crystallographic process were developed through these studies. In particular, the refinement guidelines include strategies to refine the host framework, locate guests and determine occupancies, discussion of the proper use of geometric and anisotropic displacement parameter restraints and constraints, and whether to perform solvent squeezing/masking. The single-crystal-to-single-crystal transformation process for the crystal sponges is also discussed. The presented general guidelines will be invaluable for researchers interested in using the crystalline sponge method at in-house diffraction or synchrotron facilities, will facilitate the collection and analysis of reliable high-quality data, and will allow construction of chemically and physically sensible models for guest structural determination.