Person:
Kucherlapati, Raju

Loading...
Profile Picture

Email Address

AA Acceptance Date

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Kucherlapati

First Name

Raju

Name

Kucherlapati, Raju

Search Results

Now showing 1 - 10 of 16
  • Publication
    MAPRE1 as a Plasma Biomarker for Early-Stage Colorectal Cancer and Adenomas
    (American Association for Cancer Research (AACR), 2015-11) Taguchi, Ayumu; Rho, Jung-hyun; Yan, Qingxiang; Zhang, Yuzheng; Zhao, Yang; Xu, Hanwen; Tripathi, Satyendra Chandra; Wang, Hong; Brenner, Dean E.; Kucherlapati, Melanie; Kucherlapati, Raju; Boutin, Adam T.; Wang, Y. Alan; DePinho, Ronald A.; Feng, Ziding; Lampe, Paul D.; Hanash, Samir M.
    Blood-based biomarkers for early detection of colorectal cancer (CRC) could complement current approaches to CRC screening. We previously identified the APC-binding protein MAPRE1 as a potential CRC biomarker. Here we undertook a case-control validation study to determine the performance of MAPRE1 in detecting early CRC and colon adenoma and to assess the potential relevance of additional biomarker candidates. We analyzed plasma samples from 60 patients with adenomas, 30 with early CRC, 30 with advanced CRC, and 60 healthy controls. MAPRE1 and a set of 21 proteins with potential biomarker utility were assayed using high-density antibody arrays, and CEA was assayed using ELISA. The biologic significance of the candidate biomarkers was also assessed in CRC mouse models. Plasma MAPRE1 levels were significantly elevated in both patients with adenomas and patients with CRC compared with controls (P < 0.0001). MAPRE1 and CEA together yielded an area under the curve of 0.793 and a sensitivity of 0.400 at 95% specificity for differentiating early CRC from controls. Three other biomarkers (AK1, CLIC1, and SOD1) were significantly increased in both adenoma and early CRC patient plasma samples and in plasma from CRC mouse models at preclinical stages compared with controls. The combination of MAPRE1, CEA, and AK1 yielded sensitivities of 0.483 and 0.533 at 90% specificity and sensitivities of 0.350 and 0.467 at 95% specificity for differentiating adenoma and early CRC, respectively, from healthy controls. These findings suggest that MAPRE1 can contribute to the detection of early-stage CRC and adenomas together with other biomarkers.
  • Publication
    Msh2 Acts in Medium-Spiny Striatal Neurons as an Enhancer of CAG Instability and Mutant Huntingtin Phenotypes in Huntington’s Disease Knock-In Mice
    (2012-09-07) Kovalenko, Marina; Dragileva, Ella; St. Clare, Jason; Gillis, Tammy; Guide, Jolene; New, Jaclyn; Dong, Hualing; Kucherlapati, Raju; Kucherlapati, Melanie; Ehrlich, Michelle E.; Lee, Jong-Min; Wheeler, Vanessa
    The CAG trinucleotide repeat mutation in the Huntington’s disease gene (HTT) exhibits age-dependent tissue-specific expansion that correlates with disease onset in patients, implicating somatic expansion as a disease modifier and potential therapeutic target. Somatic HTT CAG expansion is critically dependent on proteins in the mismatch repair (MMR) pathway. To gain further insight into mechanisms of somatic expansion and the relationship of somatic expansion to the disease process in selectively vulnerable MSNs we have crossed HTT CAG knock-in mice (HdhQ111) with mice carrying a conditional (floxed) Msh2 allele and D9-Cre transgenic mice, in which Cre recombinase is expressed specifically in MSNs within the striatum. Deletion of Msh2 in MSNs eliminated Msh2 protein in those neurons. We demonstrate that MSN-specific deletion of Msh2 was sufficient to eliminate the vast majority of striatal HTT CAG expansions in HdhQ111 mice. Furthermore, MSN-specific deletion of Msh2 modified two mutant huntingtin phenotypes: the early nuclear localization of diffusely immunostaining mutant huntingtin was slowed; and the later development of intranuclear huntingtin inclusions was dramatically inhibited. Therefore, Msh2 acts within MSNs as a genetic enhancer both of somatic HTT CAG expansions and of HTT CAG-dependent phenotypes in mice. These data suggest that the selective vulnerability of MSNs may be at least in part contributed by the propensity for somatic expansion in these neurons, and imply that intervening in the expansion process is likely to have therapeutic benefit.
  • Publication
    Aspirin and Low-Dose Nitric Oxide–Donating Aspirin Increase Life Span in a Lynch Syndrome Mouse Model
    (American Association for Cancer Research (AACR), 2011-05) Mcilhatton, Michael A.; Tyler, Jessica; Kerepesi, Laura A.; Bocker-Edmonston, Tina; Kucherlapati, Melanie; Edelmann, Winfried; Kucherlapati, Raju; Kopelovich, Levy; Fishel, Richard
    Non-steroidal anti-inflammatory drugs (NSAIDs) appear to be effective cancer chemopreventives. Previous cellular studies demonstrated that aspirin (acetylsalicylic acid: ASA) and nitric oxide-donating ASA (NO-ASA) suppressed microsatellite instability (MSI) in mismatch repair (MMR)-deficient cells linked to the common cancer predisposition syndrome hereditary non-polyposis colorectal cancer or Lynch syndrome (LS/HNPCC), at doses 300-3000-fold less than ASA. Using a mouse model that develops MMR-deficient intestinal tumors that appear pathologically identical to LS/HNPCC we show that ASA (400 mg/kg) and low dose NO-ASA (72 mg/kg) increased life span by 18–21%. We also note a trend where ASA treatment resulted in intestinal tumors with reduced high MSI (H-MSI) and increased low MSI (L-MSI) as defined by the Bethesda Criteria. Low dose NO-ASA had a minimal effect on MSI status. In contrast to previous studies, high dose NO-ASA (720/1500 mg/kg) treatments increased tumor burden, decreased life span and exacerbated MSI uniquely in the LS/HNPCC mouse model. These results suggest that MMR-deficient tissues/mice may be specifically sensitive to intrinsic pharmacokinetic features of this drug. It is likely that long-term treatment with ASA may represent a chemopreventive option for LS/HNPCC patients. Moreover, since low dose NO-ASA demonstrates equivalent life span increase at 10-fold lower doses than ASA, it may have the potential to significantly reduce the gastropathy associated with long-term ASA treatment.
  • Publication
    An Msh2 Conditional Knockout Mouse for Studying Intestinal Cancer and Testing Anticancer Agents
    (Elsevier BV, 2010-03) Kucherlapati, Melanie; Lee, Kyeryoung; Nguyen, Andrew A.; Clark, Alan B.; Hou, Harry; Rosulek, Andrew; Li, Hua; Yang, Kan; Fan, Kunhua; Lipkin, Martin; Bronson, Roderick; Jelicks, Linda; Kunkel, Thomas A.; Kucherlapati, Raju; Edelmann, Winfried
    Background & Aims Mutations in the DNA mismatch repair (MMR) gene MSH2 cause Lynch Syndromes I & II, and sporadic colorectal cancers (CRCs). Msh2null mice predominantly develop lymphoma and do not accurately recapitulate the CRC phenotype. Methods We generated and examined mice with a conditional Msh2 disruption (Msh2LoxP), permitting tissue-specific gene inactivation. ECMsh2LoxP/LoxP mice carried an EIIa-Cre transgene and VCMsh2LoxP/LoxP mice carried a Villin-Cre transgene. We combined the VCMsh2LoxP allele with either Msh2Δ7null (VCMsh2LoxP/null) or Msh2G674D mutations (VCMsh2LoxP/G674D) to create allelic phase mutants. These mice were given cisplatin, or 5-fluorouracil/leucovorin and oxaliplatin (FOLFOX) and their tumors were measured by magnetic resonance imaging. Results Embryonic fibroblasts from ECMsh2LoxP/LoxP mice do not express MSH2 and are MMR-deficient. Reverse transcription, PCR, and immunohistochemistry from VCMsh2LoxP/LoxP mice demonstrated specific loss of Msh2 mRNA and protein from epithelial cells of the intestinal tract. Microsatellite instability (MSI) was observed in all VCMsh2 strains and limited to the intestinal mucosa. Resulting adenomas and adenocarcinomas had somatic Apc truncation mutations. VCMsh2LoxP/LoxP mice did not develop lymphoma. Comparison of allelic phase tumors revealed significant differences in multiplicity and size. When treated with cisplatin or FOLFOX, tumor size was reduced in VCMsh2LoxP/G674D but not VCMsh2LoxP/null tumors. The apoptotic response to FOLFOX was partially sustained in the intestinal mucosa of VCMsh2LoxP/G674D animals. Conclusion Msh2LoxP/LoxP mice in combination with appropriate Cre recombinase transgenes have excellent potential for preclinical modeling of Lynch Syndrome, MMR deficient tumors of other tissue types, and use in drug development.
  • Thumbnail Image
    Publication
    Inhibition of colorectal cancer genomic copy number alterations and chromosomal fragile site tumor suppressor FHIT and WWOX deletions by DNA mismatch repair
    (Impact Journals LLC, 2017) Jahid, Sohail; Sun, Jian; Gelincik, Ozkan; Blecua, Pedro; Edelmann, Winfried; Kucherlapati, Raju; Zhou, Kathy; Jasin, Maria; Gümüş, Zeynep H.; Lipkin, Steven M.
    Homologous recombination (HR) enables precise DNA repair after DNA double strand breaks (DSBs) using identical sequence templates, whereas homeologous recombination (HeR) uses only partially homologous sequences. Homeologous recombination introduces mutations through gene conversion and genomic deletions through single-strand annealing (SSA). DNA mismatch repair (MMR) inhibits HeR, but the roles of mammalian MMR MutL homologues (MLH1, PMS2 and MLH3) proteins in HeR suppression are poorly characterized. Here, we demonstrate that mouse embryonic fibroblasts (MEFs) carrying Mlh1, Pms2, and Mlh3 mutations have higher HeR rates, by using 7,863 uniquely mapping paired direct repeat sequences (DRs) in the mouse genome as endogenous gene conversion and SSA reporters. Additionally, when DSBs are induced by gamma-radiation, Mlh1, Pms2 and Mlh3 mutant MEFs have higher DR copy number alterations (CNAs), including DR CNA hotspots previously identified in mouse MMR-deficient colorectal cancer (dMMR CRC). Analysis of The Cancer Genome Atlas CRC data revealed that dMMR CRCs have higher genome-wide DR HeR rates than MMR proficient CRCs, and that dMMR CRCs have deletion hotspots in tumor suppressors FHIT/WWOX at chromosomal fragile sites FRA3B and FRA16D (which have elevated DSB rates) flanked by paired homologous DRs and inverted repeats (IR). Overall, these data provide novel insights into the MMR-dependent HeR inhibition mechanism and its role in tumor suppression.
  • Thumbnail Image
    Publication
    Genotype Directed Therapy in Murine Mismatch Repair Deficient Tumors
    (Public Library of Science, 2013) Kucherlapati, Melanie; Esfahani, Shadi; Habibollahi, Peiman; Wang, Junning; Still, Eric R.; Bronson, Roderick; Mahmood, Umar; Kucherlapati, Raju
    The PI3K/AKT/mTOR pathway has frequently been found activated in human tumors. We show that in addition to Wnt signaling dysfunction, the PI3K/AKT/mTOR pathway is often upregulated in mouse Msh2−/− initiated intestinal tumors. NVP-BEZ235 is a dual PI3K/mTOR inhibitor toxic to many cancer cell lines and currently involved in clinical trials. We have treated two mouse models involving Msh2 that develop small intestinal and/or colonic tumors with NVP-BEZ235, and a subset of animals with NVP-BEZ235 and MEK inhibitor ADZ4266. The disease phenotype has been followed with pathology, 18F FDG PET imaging, and endoscopy. Intestinal adenocarcinomas are significantly decreased in multiplicity by both drug regimens. The majority of tumors treated with combined therapy regress significantly, while a small number of highly progressed tumors persist. We have examined PTEN, AKT, MEK 1&2, MAPK, S6K, mTOR, PDPK1, and Cyclin D1 and find variable alterations that include downregulation of PTEN, upregulation of AKT and changes in its phosphorylated forms, upregulation of pMEK 1&2, p42p44MAPK, pS6K, and Cyclin D1. Apoptosis has been found intact in some tumors and not in others. Our data indicate that NVP-BEZ235 alone and in combination with ADZ4266 are effective in treating a proportion of colorectal cancers, but that highly progressed resistant tumors grow in the presence of the drugs. Pathways upregulated in some resistant tumors also include PDPK1, suggesting that metabolic inhibitors may also be useful in treating these tumors.
  • Thumbnail Image
    Publication
    An EGFR Targeted PET Imaging Probe for the Detection of Colonic Adenocarcinomas in the Setting of Colitis
    (Ivyspring International Publisher, 2014) Turker, N. Selcan; Heidari, Pedram; Kucherlapati, Raju; Kucherlapati, Melanie; Mahmood, Umar
    Colorectal cancer is a serious complication associated with inflammatory bowel disease, often indistinguishable by screening with conventional FDG PET probes. We have developed an alternative EGFR-targeted PET imaging probe that may be used to overcome this difficulty, and successfully assessed its utility for neoplastic lesion detection in preclinical models. Cetuximab F(ab′)2 fragments were enzymatically generated, purified, and DOTA-conjugated. Radiolabeling was performed with 67Ga for cell based studies and 64Cu for in vivo imaging. Competitive binding studies were performed on CT26 cells to assess affinity (KD) and receptors per cell (Bmax). In vivo imaging using the EGFR targeted PET probe and 18F FDG was performed on CT26 tumor bearing mice in both control and dextran sodium sulfate (DSS) induced colitis settings. Spontaneous adenomas in genetically engineered mouse (GEM) models of colon cancer were additionally imaged. The EGFR imaging agent was generated with high purity (> 98%), with a labeling efficiency of 60 ± 5% and ≥99% radiochemical purity. The KD was 6.6 ± 0.7 nM and the Bmax for CT26 cells was 3.3 ± 0.1 × 106 receptors/cell. Target to background ratios (TBR) for CT26 tumors compared to colonic uptake demonstrated high values for both 18F-FDG (3.95 ± 0.13) and the developed 64Cu-DOTA-cetuximab-F(ab′)2 probe (4.42 ± 0.11) in control mice. The TBR for the EGFR targeted probe remained high (3.78 ± 0.06) in the setting of colitis, while for 18F FDG, this was markedly reduced (1.54 ± 0.08). Assessment of the EGFR targeted probe in the GEM models demonstrated a correlation between radiotracer uptake in spontaneous colonic lesions and the EGFR staining level ex vivo. A clinically translatable PET imaging probe was successfully developed to assess EGFR. The imaging agent can detect colonic tumors with a high TBR for detection of in situ lesions in the setting of colitis, and opens the possibility for a new approach for screening high-risk patients.
  • Thumbnail Image
    Publication
    Comprehensive molecular characterization of gastric adenocarcinoma
    (2014) Bass, Adam J.; Thorsson, Vesteinn; Shmulevich, Ilya; Reynolds, Sheila M.; Miller, Michael; Bernard, Brady; Hinoue, Toshinori; Laird, Peter W.; Curtis, Christina; Shen, Hui; Weisenberger, Daniel J.; Schultz, Nikolaus; Shen, Ronglai; Weinhold, Nils; Kelsen, David P.; Bowlby, Reanne; Chu, Andy; Kasaian, Katayoon; Mungall, Andrew J.; Robertson, A. Gordon; Sipahimalani, Payal; Cherniack, Andrew; Getz, Gad; Liu, Yingchun; Noble, Michael S.; Pedamallu, Chandra; Sougnez, Carrie; Taylor-Weiner, Amaro; Akbani, Rehan; Lee, Ju-Seog; Liu, Wenbin; Mills, Gordon B.; Yang, Da; Zhang, Wei; Pantazi, Angeliki; Parfenov, Michael; Gulley, Margaret; Piazuelo, M. Blanca; Schneider, Barbara G.; Kim, Jihun; Boussioutas, Alex; Sheth, Margi; Demchok, John A.; Rabkin, Charles S.; Willis, Joseph E.; Ng, Sam; Garman, Katherine; Beer, David G.; Pennathur, Arjun; Raphael, Benjamin J.; Wu, Hsin-Ta; Odze, Robert; Kim, Hark K.; Bowen, Jay; Leraas, Kristen M.; Lichtenberg, Tara M.; Weaver, Stephanie; McLellan, Michael; Wiznerowicz, Maciej; Sakai, Ryo; Lawrence, Michael S.; Cibulskis, Kristian; Lichtenstein, Lee; Fisher, Sheila; Gabriel, Stacey B.; Lander, Eric S.; Ding, Li; Niu, Beifang; Ally, Adrian; Balasundaram, Miruna; Birol, Inanc; Brooks, Denise; Butterfield, Yaron S. N.; Carlsen, Rebecca; Chu, Justin; Chuah, Eric; Chun, Hye-Jung E.; Clarke, Amanda; Dhalla, Noreen; Guin, Ranabir; Holt, Robert A.; Jones, Steven J.M.; Lee, Darlene; Li, Haiyan A.; Lim, Emilia; Ma, Yussanne; Marra, Marco A.; Mayo, Michael; Moore, Richard A.; Mungall, Karen L.; Nip, Ka Ming; Schein, Jacqueline E.; Tam, Angela; Thiessen, Nina; Beroukhim, Rameen; Carter, Scott L.; Cherniack, Andrew D.; Cho, Juok; DiCara, Daniel; Frazer, Scott; Gehlenborg, Nils; Heiman, David I.; Jung, Joonil; Kim, Jaegil; Lin, Pei; Meyerson, Matthew; Ojesina, Akinyemi I.; Pedamallu, Chandra Sekhar; Saksena, Gordon; Schumacher, Steven E.; Stojanov, Petar; Tabak, Barbara; Voet, Doug; Rosenberg, Mara; Zack, Travis I.; Zhang, Hailei; Zou, Lihua; Protopopov, Alexei; Santoso, Netty; Lee, Semin; Zhang, Jianhua; Mahadeshwar, Harshad S.; Tang, Jiabin; Ren, Xiaojia; Seth, Sahil; Yang, Lixing; Xu, Andrew W.; Song, Xingzhi; Xi, Ruibin; Bristow, Christopher A.; Hadjipanayis, Angela; Seidman, Jonathan; Chin, Lynda; Park, Peter; Kucherlapati, Raju; Ling, Shiyun; Rao, Arvind; Weinstein, John N.; Kim, Sang-Bae; Lu, Yiling; Mills, Gordon; Bootwalla, Moiz S.; Lai, Phillip H.; Triche, Timothy; Van Den Berg, David J.; Baylin, Stephen B.; Herman, James G.; Murray, Bradley A.; Askoy, B. Arman; Ciriello, Giovanni; Dresdner, Gideon; Gao, Jianjiong; Gross, Benjamin; Jacobsen, Anders; Lee, William; Ramirez, Ricardo; Sander, Chris; Senbabaoglu, Yasin; Sinha, Rileen; Sumer, S. Onur; Sun, Yichao; Thorsson, Vésteinn; Iype, Lisa; Kramer, Roger W.; Kreisberg, Richard; Rovira, Hector; Tasman, Natalie; Ng, Santa Cruz Sam; Haussler, David; Stuart, Josh M.; Verhaak, Roeland G.W.; Leiserson, Mark D. M.; Taylor, Barry S.; Black, Aaron D.; Carney, Julie Ann; Gastier-Foster, Julie M.; Helsel, Carmen; McAllister, Cynthia; Ramirez, Nilsa C.; Tabler, Teresa R.; Wise, Lisa; Zmuda, Erik; Penny, Robert; Crain, Daniel; Gardner, Johanna; Lau, Kevin; Curely, Erin; Mallery, David; Morris, Scott; Paulauskis, Joseph; Shelton, Troy; Shelton, Candace; Sherman, Mark; Benz, Christopher; Lee, Jae-Hyuk; Fedosenko, Konstantin; Manikhas, Georgy; Potapova, Olga; Voronina, Olga; Belyaev, Smitry; Dolzhansky, Oleg; Rathmell, W. Kimryn; Brzezinski, Jakub; Ibbs, Matthew; Korski, Konstanty; Kycler, Witold; ŁaŸniak, Radoslaw; Leporowska, Ewa; Mackiewicz, Andrzej; Murawa, Dawid; Murawa, Pawel; Spychała, Arkadiusz; Suchorska, Wiktoria M.; Tatka, Honorata; Teresiak, Marek; Abdel-Misih, Raafat; Bennett, Joseph; Brown, Jennifer; Iacocca, Mary; Rabeno, Brenda; Kwon, Sun-Young; Kemkes, Ariane; Curley, Erin; Alexopoulou, Iakovina; Engel, Jay; Bartlett, John; Albert, Monique; Park, Do-Youn; Dhir, Rajiv; Luketich, James; Landreneau, Rodney; Janjigian, Yelena Y.; Cho, Eunjung; Ladanyi, Marc; Tang, Laura; McCall, Shannon J.; Park, Young S.; Cheong, Jae-Ho; Ajani, Jaffer; Camargo, M. Constanza; Alonso, Shelley; Ayala, Brenda; Jensen, Mark A.; Pihl, Todd; Raman, Rohini; Walton, Jessica; Wan, Yunhu; Eley, Greg; Mills Shaw, Kenna R.; Tarnuzzer, Roy; Wang, Zhining; Yang, Liming; Zenklusen, Jean Claude; Davidsen, Tanja; Hutter, Carolyn M.; Sofia, Heidi J.; Burton, Robert; Chudamani, Sudha; Liu, Jia
    Gastric cancer is a leading cause of cancer deaths, but analysis of its molecular and clinical characteristics has been complicated by histological and aetiological heterogeneity. Here we describe a comprehensive molecular evaluation of 295 primary gastric adenocarcinomas as part of The Cancer Genome Atlas (TCGA) project. We propose a molecular classification dividing gastric cancer into four subtypes: tumours positive for Epstein–Barr virus, which display recurrent PIK3CA mutations, extreme DNA hypermethylation, and amplification of JAK2, CD274 (also known as PD-L1) and PDCD1LG2 (also knownasPD-L2); microsatellite unstable tumours, which show elevated mutation rates, including mutations of genes encoding targetable oncogenic signalling proteins; genomically stable tumours, which are enriched for the diffuse histological variant and mutations of RHOA or fusions involving RHO-family GTPase-activating proteins; and tumours with chromosomal instability, which show marked aneuploidy and focal amplification of receptor tyrosine kinases. Identification of these subtypes provides a roadmap for patient stratification and trials of targeted therapies.
  • Thumbnail Image
    Publication
    Reduced fractional anisotropy and axial diffusivity in white matter in 22q11.2 deletion syndrome: A pilot study
    (Elsevier BV, 2012) Kikinis, Zora; Asami, T.; Bouix, Sylvain; Finn, C.T.; Ballinger, T.; Tworog-Dube, E.; Kucherlapati, Raju; Kikinis, Ron; Shenton, Martha; Kubicki, Marek
    Individuals with 22q11.2 deletion syndrome (22q11.2DS) evince a 30% incidence of schizophrenia. We compared the white matter (WM) of 22q11.2DS patients without schizophrenia to a group matched healthy controls using Tract-Based-Spatial-Statistics (TBSS). We found localized reduction of Fractional Anisotropy (FA) and Axial Diffusivity (AD; measure of axonal integrity) in WM underlying the left parietal lobe. No changes in Radial Diffusivity (RD; measure of myelin integrity) were observed. Of note, studies in chronic schizophrenia patients report reduced FA, no changes in AD, and increases in RD in WM. Our findings suggest different WM microstructure in 22q11.2DS than in patients with schizophrenia.
  • Thumbnail Image
    Publication
    Genetic contributions to changes of fiber tracts of ventral visual stream in 22q11.2 deletion syndrome
    (Springer Science + Business Media, 2013) Kikinis, Zora; Makris, Nikos; Finn, Christine; Bouix, Sylvain; Lucia, Diandra; Coleman, Michael; Tworog-Dube, Erica; Kikinis, Ron; Kucherlapati, Raju; Shenton, Martha; Kubicki, Marek
    Patients with 22q11.2 deletion syndrome (22q11.2DS) represent a population at high risk for developing schizophrenia, as well as learning disabilities. Deficits in visuo-spatial memory are thought to underlie some of the cognitive disabilities. Neuronal substrates of visuo-spatial memory include the inferior fronto-occipital fasciculus (IFOF) and the inferior longitudinal fasciculus (ILF), two tracts that comprise the ventral visual stream. Diffusion Tensor Magnetic Resonance Imaging (DT-MRI) is an established method to evaluate white matter (WM) connections in vivo. DT-MRI scans of nine 22q11.2DS young adults and nine matched healthy subjects were acquired. Tractography of the IFOF and the ILF was performed. DT-MRI indices, including Fractional anisotropy (FA) (measure of WM changes), axial diffusivity (AD, measure of axonal changes) and radial diffusivity (RD, measure of myelin changes) of each of the tracts and each group were measured and compared. The 22q11.2DS group showed statistically significant reductions of FA in IFOF in the left hemisphere. Additionally, reductions of AD were found in the IFOF and the ILF in both hemispheres. These findings might be the consequence of axonal changes, which is possibly due to fewer, thinner, or less organized fibers. No changes in RD were detected in any of the tracts delineated, which is in contrast to findings in schizophrenia patients where increases in RD are believed to be indicative of demyelination. We conclude that reduced axonal changes may be key to understanding the underlying pathology of WM leading to the visuo-spatial phenotype in 22q11.2DS.