Person: Marto, Jarrod
Loading...
Email Address
AA Acceptance Date
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Marto
First Name
Jarrod
Name
Marto, Jarrod
25 results
Search Results
Now showing 1 - 10 of 25
Publication Architecture of Autoinhibited and Active BRAF–MEK1–14-3-3 Complexes(Springer Science and Business Media LLC, 2019-10-03) Rawson, Shaun; Kim, Byeong-Won; Sharif, Humayun; Jeon, Hyesung; Park, Eunyoung; Li, Kunhua; Ficarro, Scott; Gonzalez-De Pino, Gonzalo; Marto, Jarrod; Eck, MichaelRAF family kinases are RAS-activated switches that initiate signaling through the MAP kinase cascade to control cellular proliferation, differentiation and survival1-3. RAF activity is tightly regulated and inappropriate activation is a frequent cause of cancer4-6. At present, the structural basis for RAF regulation is poorly understood. Here we describe autoinhibited and active state structures of full-length BRAF in complexes with MEK1 and a 14-3-3 dimer, determined using cryo electron microscopy (cryo-EM). A 4.1Å resolution cryo-EM reconstruction reveals an inactive BRAF/MEK1 complex restrained in a cradle formed by the 14-3-3 dimer, which binds the phosphorylated S365 and S729 sites that flank the BRAF kinase domain. The BRAF cysteine-rich domain (CRD) occupies a central position that stabilizes this assembly, but the adjacent RAS-binding domain (RBD) is poorly ordered and peripheral. The 14-3-3 cradle maintains autoinhibition by sequestering the membrane-binding CRD and blocking dimerization of the BRAF kinase domain. In the active state, these inhibitory interactions are released and a single 14-3-3 dimer rearranges to bridge the C-terminal pS729 binding sites of two BRAFs, driving formation of an active, back-to-back BRAF dimer. Our structural snapshots provide a foundation for understanding normal RAF regulation and its mutational disruption in cancer and developmental syndromes.Publication Stabilization of the methyl-CpG binding protein ZBTB38 by the deubiquitinase USP9X limits the occurrence and toxicity of oxidative stress in human cells(Oxford University Press, 2018) Miotto, Benoit; Marchal, Claire; Adelmant, Guillaume; Guinot, Nadège; Xie, Ping; Marto, Jarrod; Zhang, Lingqiang; Defossez, Pierre-AntoineAbstract Reactive oxygen species (ROS) are a byproduct of cell metabolism, and can also arise from environmental sources, such as toxins or radiation. Depending on dose and context, ROS have both beneficial and deleterious roles in mammalian development and disease, therefore it is crucial to understand how these molecules are generated, sensed, and detoxified. The question of how oxidative stress connects to the epigenome, in particular, is important yet incompletely understood. Here we show that an epigenetic regulator, the methyl-CpG-binding protein ZBTB38, limits the basal cellular production of ROS, is induced by ROS, and is required to mount a proper response to oxidative stress. Molecularly, these functions depend on a deubiquitinase, USP9X, which interacts with ZBTB38, deubiquitinates it, and stabilizes it. We find that USP9X is itself stabilized by oxidative stress, and is required together with ZBTB38 to limit the basal generation of ROS, as well as the toxicity of an acute oxidative stress. Our data uncover a new nuclear target of USP9X, show that the USP9X/ZBTB38 axis limits, senses and detoxifies ROS, and provide a molecular link between oxidative stress and the epigenome.Publication Genome-scale Proteome Quantification by DEEP SEQ Mass Spectrometry(2013) Zhou, Feng; Lu, Yu; Ficarro, Scott; Adelmant, Guillaume; Jiang, Wenyu; Luckey, C. John; Marto, JarrodAdvances in chemistry and massively parallel detection underlie DNA sequencing platforms that are poised for application in personalized medicine. In stark contrast, systematic generation of protein-level data lags well-behind genomics in virtually every aspect: depth of coverage, throughput, ease of sample preparation, and experimental time. Here, to bridge this gap, we develop an approach based on simple detergent lysis and single-enzyme digest, extreme, orthogonal separation of peptides, and true nanoflow LC-MS/MS that provides high peak capacity and ionization efficiency. This automated, deep efficient peptide sequencing and quantification (DEEP SEQ) mass spectrometry platform provides genome-scale proteome coverage equivalent to RNA-seq ribosomal profiling and accurate quantification for multiplexed isotope labels. In a model of the embryonic to epiblast transition in murine stem cells, we unambiguously quantify 11,352 gene products that span 70% of Swiss-Prot and capture protein regulation across the full detectable range of high-throughput gene expression and protein translation.Publication Structure of a pseudokinase domain switch that controls oncogenic activation of Jak kinases(2013) Toms, Angela V.; Deshpande, Anagha; McNally, Randall; Jeong, Youngjee; Rogers, Julia; Kim, Chae Un; Gruner, Sol M.; Ficarro, Scott; Marto, Jarrod; Sattler, Martin; Griffin, James; Eck, MichaelThe V617F mutation in the Jak2 pseudokinase domain causes myeloproliferative neoplasms, and the equivalent mutation in Jak1 (V658F) is found in T-cell leukemias. Crystal structures of wild type and V658F mutant human Jak1 pseudokinase reveal a conformational switch that remodels a linker segment encoded by exon 12, which is also a site of mutations in Jak2. This switch is required for V617F-mediated Jak2 activation, and possibly for physiologic Jak activation.Publication Proteomic Landscape of Tissue-Specific Cyclin E Functions in Vivo(Public Library of Science, 2016) Odajima, Junko; Saini, Siddharth; Jung, Piotr; Ndassa-Colday, Yasmine; Ficaro, Scott; Geng, Yan; Marco, Eugenio; Michowski, Wojciech; Wang, Yaoyu E.; DeCaprio, James; Litovchick, Larisa; Marto, Jarrod; Sicinski, PiotrE-type cyclins (cyclins E1 and E2) are components of the cell cycle machinery that has been conserved from yeast to humans. The major function of E-type cyclins is to drive cell division. It is unknown whether in addition to their ‘core’ cell cycle functions, E-type cyclins also perform unique tissue-specific roles. Here, we applied high-throughput mass spectrometric analyses of mouse organs to define the repertoire of cyclin E protein partners in vivo. We found that cyclin E interacts with distinct sets of proteins in different compartments. These cyclin E interactors are highly enriched for phosphorylation targets of cyclin E and its catalytic partner, the cyclin-dependent kinase 2 (Cdk2). Among cyclin E interactors we identified several novel tissue-specific substrates of cyclin E-Cdk2 kinase. In proliferating compartments, cyclin E-Cdk2 phosphorylates Lin proteins within the DREAM complex. In the testes, cyclin E-Cdk2 phosphorylates Mybl1 and Dmrtc2, two meiotic transcription factors that represent key regulators of spermatogenesis. In embryonic and adult brains cyclin E interacts with proteins involved in neurogenesis, while in adult brains also with proteins regulating microtubule-based processes and microtubule cytoskeleton. We also used quantitative proteomics to demonstrate re-wiring of the cyclin E interactome upon ablation of Cdk2. This approach can be used to study how protein interactome changes during development or in any pathological state such as aging or cancer.Publication Mutations in G protein β subunits promote transformation and kinase inhibitor resistance(Nature Publishing Group, 2014) Yoda, Akinori; Adelmant, Guillaume; Tamburini, Jerome; Chapuy, Bjoern; Shindoh, Nobuaki; Yoda, Yuka; Weigert, Oliver; Kopp, Nadja; Wu, Shuo-Chieh; Kim, Sunhee S; Liu, Huiyun; Tivey, Trevor; Christie, Amanda L; Elpek, Kutlu G; Card, Joseph; Gritsman, Kira; Gotlib, Jason; Deininger, Michael W; Makishima, Hideki; Turley, Shannon J.; Javidi-Sharifi, Nathalie; Maciejewski, Jaroslaw P; Jaiswal, Siddhartha; Ebert, Benjamin; Rodig, Scott; Tyner, Jeffrey W; Marto, Jarrod; Weinstock, David; Lane, AndrewActivating mutations in genes encoding G protein α (Gα) subunits occur in 4-5% of all human cancers, but oncogenic alterations in Gβ subunits have not been defined. Here we demonstrate that recurrent mutations in the Gβ proteins GNB1 and GNB2 confer cytokine-independent growth and activate canonical G protein signaling. Multiple mutations in GNB1 affect the protein interface that binds Gα subunits as well as downstream effectors and disrupt Gα interactions with the Gβγ dimer. Different mutations in Gβ proteins clustered partly on the basis of lineage; for example, all 11 GNB1 K57 mutations were in myeloid neoplasms, and seven of eight GNB1 I80 mutations were in B cell neoplasms. Expression of patient-derived GNB1 variants in Cdkn2a-deficient mouse bone marrow followed by transplantation resulted in either myeloid or B cell malignancies. In vivo treatment with the dual PI3K-mTOR inhibitor BEZ235 suppressed GNB1-induced signaling and markedly increased survival. In several human tumors, mutations in the gene encoding GNB1 co-occurred with oncogenic kinase alterations, including the BCR-ABL fusion protein, the V617F substitution in JAK2 and the V600K substitution in BRAF. Coexpression of patient-derived GNB1 variants with these mutant kinases resulted in inhibitor resistance in each context. Thus, GNB1 and GNB2 alterations confer transformed and resistance phenotypes across a range of human tumors and may be targetable with inhibitors of G protein signaling.Publication Targeting transcription regulation in cancer with a covalent CDK7 inhibitor(2014) Kwiatkowski, Nicholas; Zhang, Tinghu; Rahl, Peter B; Abraham, Brian J; Reddy, Jessica; Ficarro, Scott; Dastur, Anahita; Amzallag, Arnaud; Ramaswamy, Sridhar; Tesar, Bethany; Jenkins, Christopher R; Hannett, Nancy M; McMillin, Douglas; Sanda, Takaomi; Sim, Taebo; Kim, Nam Doo; Look, Thomas; Mitsiades, Constantine; Weng, Andrew P; Brown, Jennifer; Benes, Cyril; Marto, Jarrod; Young, Richard A; Gray, NathanaelTumor oncogenes include transcription factors that co-opt the general transcriptional machinery to sustain the oncogenic state1, but direct pharmacological inhibition of transcription factors has thus far proven difficult2. However, the transcriptional machinery contains various enzymatic co-factors that can be targeted for development of new therapeutic candidates3, including cyclin-dependent kinases (CDKs)4. Here we present the discovery and characterization of the first covalent CDK7 inhibitor, THZ1, which has the unprecedented ability to target a remote cysteine residue located outside of the canonical kinase domain, providing an unanticipated means of achieving selectivity for CDK7. Cancer cell line profiling indicates that a subset of cancer cell lines, including T-ALL, exhibit exceptional sensitivity to THZ1. Genome-wide analysis in Jurkat T-ALL shows that THZ1 disproportionally affects transcription of RUNX1 and suggests that sensitivity to THZ1 may be due to vulnerability conferred by the RUNX1 super-enhancer and this transcription factor’s key role in the core transcriptional regulatory circuitry of these tumor cells. Pharmacological modulation of CDK7 kinase activity may thus provide an approach to identify and treat tumor types exhibiting extreme dependencies on transcription for maintenance of the oncogenic state.Publication Proteomic Analysis Reveals CACN-1 Is a Component of the Spliceosome in Caenorhabditis elegans(Genetics Society of America, 2014) Doherty, Michael F.; Adelmant, Guillaume; Cecchetelli, Alyssa D.; Marto, Jarrod; Cram, Erin J.Cell migration is essential for embryonic development and tissue formation in all animals. cacn-1 is a conserved gene of unknown molecular function identified in a genome-wide screen for genes that regulate distal tip cell migration in the nematode worm Caenorhabditis elegans. In this study we take a proteomics approach to understand CACN-1 function. To isolate CACN-1−interacting proteins, we used an in vivo tandem-affinity purification strategy. Tandem-affinity purification−tagged CACN-1 complexes were isolated from C. elegans lysate, analyzed by mass spectrometry, and characterized bioinformatically. Results suggest significant interaction of CACN-1 with the C. elegans spliceosome. All of the identified interactors were screened for distal tip cell migration phenotypes using RNAi. Depletion of many of these factors led to distal tip cell migration defects, particularly a failure to stop migrating, a phenotype commonly seen in cacn-1 deficient animals. The results of this screen identify eight novel regulators of cell migration and suggest CACN-1 may participate in a protein network dedicated to high-fidelity gonad development. The composition of proteins comprising the CACN-1 network suggests that this critical developmental module may exert its influence through alternative splicing or other post-transcriptional gene regulation.Publication The Chromatin Remodeling Factor CHD5 Is a Transcriptional Repressor of WEE1(Public Library of Science, 2014) Quan, Jinhua; Adelmant, Guillaume; Marto, Jarrod; Look, A. Thomas; Yusufzai, TimurLoss of the chromatin remodeling ATPase CHD5 has been linked to the progression of neuroblastoma tumors, yet the underlying mechanisms behind the tumor suppressor role of CHD5 are unknown. In this study, we purified the human CHD5 complex and found that CHD5 is a component of the full NuRD transcriptional repressor complex, which also contains methyl-CpG binding proteins and histone deacetylases. The CHD5/NuRD complex appears mutually exclusive with the related CHD4/NuRD complex as overexpression of CHD5 results in loss of the CHD4 protein in cells. Following a search for genes that are regulated by CHD5 in neuroblastoma cells, we found that CHD5 binds to and represses the G2/M checkpoint gene WEE1. Reintroduction of CHD5 into neuroblastoma cells represses WEE1 expression, demonstrating that CHD5 can function as a repressor in cells. A catalytically inactive mutant version of CHD5 is able to associate with a NuRD cofactor but fails to repress transcription. Our study shows that CHD5 is a NuRD-associated transcriptional repressor and identifies WEE1 as one of the CHD5-regulated genes that may link CHD5 to tumor suppression.Publication The Cyclophilin A-CD147 complex promotes bone marrow colonization of B-cell malignancies: implications for therapy(2015) Zhu, Di; Wang, Zhongqiu; Zhao, Jian-Jun; Calimeri, Teresa; Meng, Jiang; Hideshima, Teru; Fulciniti, Mariateresa; Kang, Yue; Ficarro, Scott; Tai, Yu-Tzu; Hunter, Zachary; McMilin, Douglas; Tong, Haoxuan; Mitsiades, Constantine; Wu, Catherine; Treon, Steven; Dorfman, David M.; Pinkus, Geraldine; Munshi, Nikhil; Tassone, Pierfrancesco; Marto, Jarrod; Anderson, Kenneth; Carrasco, RubenB-cell malignancies frequently colonizes the bone marrow (BM). The mechanisms responsible for this preferential homing are not entirely known. Using multiple myeloma (MM) as a model of a terminally differentiated B-cell malignancy that selectively colonizes the BM, we demonstrated that BM endothelial cells (BMECs), secrete cyclophilin A (eCyPA), which promotes migration, proliferation, and BM colonization of MM cells via binding to its receptor, CD147, on MM cells. The clinical and translational implications of this work are highlighted by the observation of significantly higher eCyPA levels in BM serum than in peripheral blood (PB) in MM persons, and that eCyPA-CD147 blockade supresses BM-homing and tumor growth in a mouse xenograft model of MM. eCyPA also promoted migration of CLL and LPL cells, two other B-cell malignancies that colonize the BM and express CD147. These findings offer a compelling rationale for exploring the eCyPA-CD147 axis as therapeutic target for these malignancies.
- «
- 1 (current)
- 2
- 3
- »