Person: Scrivani, Steven
Loading...
Email Address
AA Acceptance Date
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Scrivani
First Name
Steven
Name
Scrivani, Steven
3 results
Search Results
Now showing 1 - 3 of 3
Publication Increased Functional Activation of Limbic Brain Regions during Negative Emotional Processing in Migraine(Frontiers Media S.A., 2016) Wilcox, Sophie L.; Veggeberg, Rosanna; Lemme, Jordan; Hodkinson, Duncan; Scrivani, Steven; Burstein, Rami; Becerra, Lino; Borsook, DavidPain is both an unpleasant sensory and emotional experience. This is highly relevant in migraine where cortical hyperexcitability in response to sensory stimuli (including pain, light, and sound) has been extensively reported. However, migraine may feature a more general enhanced response to aversive stimuli rather than being sensory-specific. To this end we used functional magnetic resonance imaging to assess neural activation in migraineurs interictaly in response to emotional visual stimuli from the International Affective Picture System. Migraineurs, compared to healthy controls, demonstrated increased neural activity in response to negative emotional stimuli. Most notably in regions overlapping in their involvement in both nociceptive and emotional processing including the posterior cingulate, caudate, amygdala, and thalamus (cluster corrected, p < 0.01). In contrast, migraineurs and healthy controls displayed no and minimal differences in response to positive and neutral emotional stimuli, respectively. These findings support the notion that migraine may feature more generalized altered cerebral processing of aversive/negative stimuli, rather than exclusively to sensory stimuli. A generalized hypersensitivity to aversive stimuli may be an inherent feature of migraine, or a consequential alteration developed over the duration of the disease. This proposed cortical-limbic hypersensitivity may form an important part of the migraine pathophysiology, including psychological comorbidity, and may represent an innate sensitivity to aversive stimuli that underpins attack triggers, attack persistence and (potentially) gradual headache chronification.Publication Primary Somatosensory Cortices Contain Altered Patterns of Regional Cerebral Blood Flow in the Interictal Phase of Migraine(Public Library of Science, 2015) Hodkinson, Duncan; Veggeberg, Rosanna; Wilcox, Sophie L.; Scrivani, Steven; Burstein, Rami; Becerra, Lino; Borsook, DavidThe regulation of cerebral blood flow (CBF) is a complex integrated process that is critical for supporting healthy brain function. Studies have demonstrated a high incidence of alterations in CBF in patients suffering from migraine with and without aura during different phases of attacks. However, the CBF data collected interictally has failed to show any distinguishing features or clues as to the underlying pathophysiology of the disease. In this study we used the magnetic resonance imaging (MRI) technique—arterial spin labeling (ASL)—to non-invasively and quantitatively measure regional CBF (rCBF) in a case-controlled study of interictal migraine. We examined both the regional and global CBF differences between the groups, and found a significant increase in rCBF in the primary somatosensory cortex (S1) of migraine patients. The CBF values in S1 were positively correlated with the headache attack frequency, but were unrelated to the duration of illness or age of the patients. Additionally, 82% of patients reported skin hypersensitivity (cutaneous allodynia) during migraine, suggesting atypical processing of somatosensory stimuli. Our results demonstrate the presence of a disease-specific functional deficit in a known region of the trigemino-cortical pathway, which may be driven by adaptive or maladaptive functional plasticity. These findings may in part explain the altered sensory experiences reported between migraine attacks.Publication Cortico–Cortical Connections of Primary Sensory Areas and Associated Symptoms in Migraine(Society for Neuroscience, 2016) Hodkinson, Duncan; Veggeberg, Rosanna; Kucyi, Aaron; van Dijk, Koene R. A.; Wilcox, Sophie L.; Scrivani, Steven; Burstein, Rami; Becerra, Lino; Borsook, DavidAbstract Migraine is a recurring, episodic neurological disorder characterized by headache, nausea, vomiting, and sensory disturbances. These events are thought to arise from the activation and sensitization of neurons along the trigemino–vascular pathway. From animal studies, it is known that thalamocortical projections play an important role in the transmission of nociceptive signals from the meninges to the cortex. However, little is currently known about the potential involvement of cortico–cortical feedback projections from higher-order multisensory areas and/or feedforward projections from principle primary sensory areas or subcortical structures. In a large cohort of human migraine patients (N = 40) and matched healthy control subjects (N = 40), we used resting-state intrinsic functional connectivity to examine the cortical networks associated with the three main sensory perceptual modalities of vision, audition, and somatosensation. Specifically, we sought to explore the complexity of the sensory networks as they converge and become functionally coupled in multimodal systems. We also compared self-reported retrospective migraine symptoms in the same patients, examining the prevalence of sensory symptoms across the different phases of the migraine cycle. Our results show widespread and persistent disturbances in the perceptions of multiple sensory modalities. Consistent with this observation, we discovered that primary sensory areas maintain local functional connectivity but express impaired long-range connections to higher-order association areas (including regions of the default mode and salience network). We speculate that cortico–cortical interactions are necessary for the integration of information within and across the sensory modalities and, thus, could play an important role in the initiation of migraine and/or the development of its associated symptoms.