Person:
Borges, Lawrence

Loading...
Profile Picture

Email Address

AA Acceptance Date

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Borges

First Name

Lawrence

Name

Borges, Lawrence

Search Results

Now showing 1 - 3 of 3
  • Thumbnail Image
    Publication
    Long‐term Phase 1/2 intraspinal stem cell transplantation outcomes in ALS
    (John Wiley and Sons Inc., 2018) Goutman, Stephen A.; Brown, Morton B.; Glass, Jonathan D.; Boulis, Nicholas M.; Johe, Karl; Hazel, Tom; Cudkowicz, Merit; Atassi, Nazem; Borges, Lawrence; Patil, Parag G.; Sakowski, Stacey A.; Feldman, Eva L.
    Abstract Objective: Intraspinal human spinal cord‐derived neural stem cell (HSSC) transplantation is a potential therapy for amyotrophic lateral sclerosis (ALS); however, previous trials lack controls. This post hoc analysis compared ambulatory limb‐onset ALS participants in Phase 1 and 2 (Ph1/2) open‐label intraspinal HSSC transplantation studies up to 3 years after transplant to matched participants in Pooled Resource Open‐Access ALS Clinical Trials (PRO‐ACT) and ceftriaxone datasets to provide required analyses to inform future clinical trial designs. Methods: Survival, ALSFRS‐R, and a composite statistic (ALS/SURV) combining survival and ALS Functional Rating Scale revised (ALSFRS‐R) functional status were assessed for matched participant subsets: PRO‐ACT n = 1108, Ph1/2 n = 21 and ceftriaxone n = 177, Ph1/2 n = 20. Results: Survival did not differ significantly between cohorts: Ph1/2 median survival 4.7 years, 95% CI (1.2, ∞) versus PRO‐ACT 2.3 years (1.9, 2.5), P = 1.0; Ph1/2 3.0 years (1.2, 5.6) versus ceftriaxone 2.3 years (1.8, 2.8), P = 0.88. Mean ALSFRS‐R at 24 months significantly differed between Ph1/2 and both comparison cohorts (Ph1/2 30.1 ± 8.6 vs. PRO‐ACT 24.0 ± 10.2, P = 0.048; Ph1/2 30.7 ± 8.8 vs. ceftriaxone 19.2 ± 9.5, P = 0.0023). Using ALS/SURV, median PRO‐ACT and ceftriaxone participants died by 24 months, whereas median Ph1/2 participant ALSFRS‐Rs were 23 (P = 0.0038) and 19 (P = 0.14) in PRO‐ACT and ceftriaxone comparisons at 24 months, respectively, supporting improved functional outcomes in the Ph1/2 study. Interpretation Comparison of Ph1/2 studies to historical datasets revealed significantly improved survival and function using ALS/SURV versus PRO‐ACT controls. While results are encouraging, comparison against historical populations demonstrate limitations in noncontrolled studies. These findings support continued evaluation of HSSC transplantation in ALS, support the benefit of control populations, and enable necessary power calculations to design a randomized, sham surgery‐controlled efficacy study.
  • Thumbnail Image
    Publication
    Sporadic hemangioblastomas are characterized by cryptic VHL inactivation
    (Springer Nature, 2014) Shankar, Ganesh; Taylor-Weiner, Amaro; Lelic, Nina; Jones, Robert T; Kim, James C; Francis, Joshua M; Abedalthagafi, Malak; Borges, Lawrence; Coumans, Jean-Valery; Curry, William; Nahed, Brian; Shin, John; Paek, Sun Ha; Park, Sung-Hye; Stewart, Chip; Lawrence, Michael S; Cibulskis, Kristian; Thorner, Aaron R; Van Hummelen, Paul; Stemmer-Rachamimov, Anat; Batchelor, Tracy; Carter, Scott; Hoang, Mai; Santagata, Sandro; Louis, David; Barker, Frederick; Meyerson, Matthew; Getz, Gad; Brastianos, Priscilla; Cahill, Daniel
    Hemangioblastomas consist of 10-20% neoplastic “stromal” cells within a vascular tumor cell mass of reactive pericytes, endothelium and lymphocytes. Familial cases of central nervous system hemangioblastoma uniformly result from mutations in the Von Hippel-Lindau (VHL) gene. In contrast, inactivation of VHL has been previously observed in only a minority of sporadic hemangioblastomas, suggesting an alternative genetic etiology. We performed deep-coverage DNA sequencing on 32 sporadic hemangioblastomas (whole exome discovery cohort n = 10, validation n = 22), followed by analysis of clonality, copy number alteration, and somatic mutation. We identified somatic mutation, loss of heterozygosity and/or deletion of VHL in 8 of 10 discovery cohort tumors. VHL inactivating events were ultimately detected in 78% (25/32) of cases. No other gene was significantly mutated. Overall, deep-coverage sequence analysis techniques uncovered VHL alterations within the neoplastic fraction of these tumors at higher frequencies than previously reported. Our findings support the central role of VHL inactivation in the molecular pathogenesis of both familial and sporadic hemangioblastomas.
  • Thumbnail Image
    Publication
    A Novel Mouse Model for Neurotrophic Keratopathy: Trigeminal Nerve Stereotactic Electrolysis through the Brain
    (Association for Research in Vision and Ophthalmology (ARVO), 2011) Ferrari, Giulio; Chauhan, Sunil; Ueno, Hiroki; Nallasamy, Nambi; Gandolfi, Stefano; Borges, Lawrence; Dana, Reza
    Purpose. To develop a mouse model of neurotrophic keratopathy by approaching the trigeminal nerve through the brain and to evaluate changes in corneal cell apoptosis and proliferation. Methods. Six- to 8-week-old male C57BL/6 mice underwent trigeminal stereotactic electrolysis (TSE) to destroy the ophthalmic branch of the trigeminal nerve. Clinical follow-up using biomicroscopy of the cornea was performed at days 2, 4, 5, and 7. To confirm the effectiveness of the procedure, we examined the gross nerve pathology, blink reflex, and immunohistochemistry of the corneal nerves. TUNEL-positive apoptotic and Ki-67–positive proliferating corneal cells were evaluated to detect changes from the contralateral normal eye. Results. TSE was confirmed by gross histology of the trigeminal nerve and was considered effective if the corneal blink reflex was completely abolished. TSE totally abolished the blink reflex in 70% of mice and significantly reduced it in the remaining 30%. Animals with absent blink reflex were used for subsequent experiments. In these mice, a progressive corneal degeneration developed, with thinning of the corneal epithelium and eventually perforation after 7 days. In all mice, 48 hours after TSE, corneal nerves were not recognizable histologically. Seven days after TSE, an increase in cellular apoptosis in all the corneal layers and a reduction in proliferation in basal epithelial cells were detected consistently in all mice. Conclusions. TSE was able, in most cases, to induce a disease state that reflected clinical neurotrophic keratitis without damaging the periocular structures. Moreover, corneal denervation led to increased apoptosis and reduced proliferation of epithelial cells, formally implicating intact nerve function in regulating epithelial survival and turnover.