Person:
Arlotta, Paola

Loading...
Profile Picture

Email Address

AA Acceptance Date

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Arlotta

First Name

Paola

Name

Arlotta, Paola

Search Results

Now showing 1 - 10 of 14
  • Publication
    Pyramidal Neuron Subtype Diversity Governs Microglia States in the Neocortex
    (Springer Science and Business Media LLC, 2022-08-10) Stogsdill, Jeffrey; Kim, Kwanho; Binan, Loïc; Farhi, Samouil; Levin, Joshua; Arlotta, Paola
    Microglia are macrophages of the brain parenchyma that exist in multiple transcriptional states and reside within a wide range of neuronal environments. However, it is poorly understood how and where these states are generated. Here, using the mouse somatosensory cortex, we demonstrate that microglia density and molecular state acquisition are determined by the local composition of pyramidal neuron classes. Using single-cell and spatial transcriptomic profiling, we unveil the molecular signatures and spatial distributions of diverse microglia populations and show that certain states are enriched in specific cortical layers while others are broadly distributed throughout the cortex. Notably, conversion of deep-layer pyramidal neurons to an alternate class identity reconfigures the distribution of local, layer-enriched homeostatic microglia to match the new neuronal niche. Leveraging the transcriptional diversity of pyramidal neurons in the neocortex, we construct a ligand-receptor atlas describing interactions between individual pyramidal neuron subtypes and microglia states, revealing rules of neuron-microglia communication. Our findings uncover a fundamental role for neuronal diversity in instructing the acquisition of microglia states, as a potential mechanism for fine-tuning neuroimmune interactions within the cortical local circuitry.
  • Thumbnail Image
    Publication
    Combining NGN2 Programming with Developmental Patterning Generates Human Excitatory Neurons with NMDAR-Mediated Synaptic Transmission
    (2018) Nehme, Ralda; Zuccaro, Emanuela; Dia Ghosh, Sulagna; Li, Chenchen; Sherwood, John; Pietilainen, Olli; Barrett, Lindy; Limone, Francesco; Worringer, Kathleen A.; Kommineni, Sravya; Zang, Ying; Cacchiarelli, Davide; Meissner, Alex; Adolfsson, Rolf; Haggarty, Stephen; Madison, Jon; Muller, Matthias; Arlotta, Paola; Fu, Zhanyan; Feng, Guoping; Eggan, Kevin
    SUMMARY Transcription factor programming of pluripotent stem cells (PSCs) has emerged as an approach to generate human neurons for disease modeling. However, programming schemes produce a variety of cell types, and those neurons that are made often retain an immature phenotype, which limits their utility in modeling neuronal processes, including synaptic transmission. We report that combining NGN2 programming with SMAD and WNT inhibition generates human patterned induced neurons (hpiNs). Single-cell analyses showed that hpiN cultures contained cells along a developmental continuum, ranging from poorly differentiated neuronal progenitors to well-differentiated, excitatory glutamatergic neurons. The most differentiated neurons could be identified using a CAMK2A::GFP reporter gene and exhibited greater functionality, including NMDAR-mediated synaptic transmission. We conclude that utilizing single-cell and reporter gene approaches for selecting successfully programmed cells for study will greatly enhance the utility of hpiNs and other programmed neuronal populations in the modeling of nervous system disorders.
  • Thumbnail Image
    Publication
    Reshaping the brain: direct lineage conversion in the nervous system
    (Faculty of 1000 Ltd, 2013) Amamoto, Ryoji; Arlotta, Paola
    During embryonic development, cells in an uncommitted pluripotent state undergo progressive epigenetic changes that lock them into a final restrictive differentiated state. However, recent advances have shown that not only is it possible for a fully differentiated cell to revert back to a pluripotent state, a process called nuclear reprogramming, but also that differentiated cells can be directly converted from one class into another without generating progenitor intermediates, a process known as direct lineage conversion. In this review, we discuss recent progress made in direct lineage reprogramming of differentiated cells into neurons and discuss some of the therapeutic implications of the findings.
  • Thumbnail Image
    Publication
    Multiple knockout mouse models reveal lincRNAs are required for life and brain development
    (eLife Sciences Publications, Ltd, 2013) Sauvageau, Martin; Goff, Loyal; Lodato, Simona; Bonev, Boyan; Groff, Abigail F.; Gerhardinger, Chiara; Sanchez-Gomez, Diana B; Hacisuleyman, Ezgi; Li, Eric; Spence, Matthew; Liapis, Stephen C; Mallard, William; Morse, Michael; Swerdel, Mavis R; D’Ecclessis, Michael F; Moore, Jennifer C; Lai, Venus; Gong, Guochun; Yancopoulos, George D; Frendewey, David; Kellis, Manolis; Hart, Ronald P; Valenzuela, David M; Arlotta, Paola; Rinn, John
    Many studies are uncovering functional roles for long noncoding RNAs (lncRNAs), yet few have been tested for in vivo relevance through genetic ablation in animal models. To investigate the functional relevance of lncRNAs in various physiological conditions, we have developed a collection of 18 lncRNA knockout strains in which the locus is maintained transcriptionally active. Initial characterization revealed peri- and postnatal lethal phenotypes in three mutant strains (Fendrr, Peril, and Mdgt), the latter two exhibiting incomplete penetrance and growth defects in survivors. We also report growth defects for two additional mutant strains (linc–Brn1b and linc–Pint). Further analysis revealed defects in lung, gastrointestinal tract, and heart in Fendrr−/− neonates, whereas linc–Brn1b−/− mutants displayed distinct abnormalities in the generation of upper layer II–IV neurons in the neocortex. This study demonstrates that lncRNAs play critical roles in vivo and provides a framework and impetus for future larger-scale functional investigation into the roles of lncRNA molecules. DOI: http://dx.doi.org/10.7554/eLife.01749.001
  • Thumbnail Image
    Publication
    Efficient construction of sequence-specific TAL effectors for modulating mammalian transcription
    (Nature Publishing Group, 2011) Zhang, Feng; Cong, Le; Lodato, Simona; Kosuri, Sriram; Church, George; Arlotta, Paola
    The ability to direct functional proteins to specific DNA sequences is a long-sought goal in the study and engineering of biological processes. Transcription activator–like effectors (TALEs) from Xanthomonas sp. are site-specific DNA-binding proteins that can be readily designed to target new sequences. Because TALEs contain a large number of repeat domains, it can be difficult to synthesize new variants. Here we describe a method that overcomes this problem. We leverage codon degeneracy and type IIs restriction enzymes to generate orthogonal ligation linkers between individual repeat monomers, thus allowing full-length, customized, repeat domains to be constructed by hierarchical ligation. We synthesized 17 TALEs that are customized to recognize specific DNA-binding sites, and demonstrate that they can specifically modulate transcription of endogenous genes (SOX2 and KLF4) in human cells.
  • Publication
    Excitatory Projection Neuron Subtypes Control the Distribution of Local Inhibitory Interneurons in the Cerebral Cortex
    (Elsevier BV, 2011) Lodato, Simona; Rouaux, Caroline; Quast, Kathleen; Jantrachotechatchawan, Chanati; Studer, Michèle; Hensch, Takao; Arlotta, Paola
    In the mammalian cerebral cortex, the developmental events governing the integration of excitatory projection neurons and inhibitory interneurons into balanced local circuitry are poorly understood. We report that different subtypes of projection neurons uniquely and differentially determine the laminar distribution of cortical interneurons. We find that in Fezf2−/− cortex, the exclusive absence of subcerebral projection neurons and their replacement by callosal projection neurons cause distinctly abnormal lamination of interneurons and altered GABAergic inhibition. In addition, experimental generation of either corticofugal neurons or callosal neurons below the cortex is sufficient to recruit cortical interneurons to these ectopic locations. Strikingly, the identity of the projection neurons generated, rather than strictly their birthdate, determines the specific types of interneurons recruited. These data demonstrate that in the neocortex individual populations of projection neurons cell-extrinsically control the laminar fate of interneurons and the assembly of local inhibitory circuitry.
  • Thumbnail Image
    Publication
    Adult axolotls can regenerate original neuronal diversity in response to brain injury
    (eLife Sciences Publications, Ltd, 2016) Amamoto, Ryoji; Huerta, Violeta Gisselle Lopez; Takahashi, Emi; Dai, Guangping; Grant, Aaron; Fu, Zhanyan; Arlotta, Paola
    The axolotl can regenerate multiple organs, including the brain. It remains, however, unclear whether neuronal diversity, intricate tissue architecture, and axonal connectivity can be regenerated; yet, this is critical for recovery of function and a central aim of cell replacement strategies in the mammalian central nervous system. Here, we demonstrate that, upon mechanical injury to the adult pallium, axolotls can regenerate several of the populations of neurons present before injury. Notably, regenerated neurons acquire functional electrophysiological traits and respond appropriately to afferent inputs. Despite the ability to regenerate specific, molecularly-defined neuronal subtypes, we also uncovered previously unappreciated limitations by showing that newborn neurons organize within altered tissue architecture and fail to re-establish the long-distance axonal tracts and circuit physiology present before injury. The data provide a direct demonstration that diverse, electrophysiologically functional neurons can be regenerated in axolotls, but challenge prior assumptions of functional brain repair in regenerative species. DOI: http://dx.doi.org/10.7554/eLife.13998.001
  • Thumbnail Image
    Publication
    Novel Subtype-Specific Genes Identify Distinct Subpopulations of Callosal Projection Neurons
    (The Society for Neuroscience, 2009) Molyneaux, Bradley John; Arlotta, Paola; Fame, Ryan; MacDonald, Jessica Linn; MacQuarrie, Kyle L.; Macklis, Jeffrey
    Little is known about the molecular development and heterogeneity of callosal projection neurons (CPN), cortical commissural neurons that connect homotopic regions of the two cerebral hemispheres via the corpus callosum and that are critical for bilateral integration of cortical information. Here we report on the identification of a series of genes that individually and in combination define CPN and novel CPN subpopulations during embryonic and postnatal development. We used in situ hybridization analysis, immunocytochemistry, and retrograde labeling to define the layer-specific and neuron-type-specific distribution of these newly identified CPN genes across different stages of maturation. We demonstrate that a subset of these genes (e.g., Hspb3 and Lpl) appear specific to all CPN (in layers II/III and V–VI), whereas others (e.g., Nectin-3, Plexin-D1, and Dkk3) discriminate between CPN of the deep layers and those of the upper layers. Furthermore, the data show that several genes finely subdivide CPN within individual layers and appear to label CPN subpopulations that have not been described previously using anatomical or morphological criteria. The genes identified here likely reflect the existence of distinct programs of gene expression governing the development, maturation, and function of the newly identified subpopulations of CPN. Together, these data define the first set of genes that identify and molecularly subcategorize distinct populations of callosal projection neurons, often located in distinct subdivisions of the canonical cortical laminae.
  • Thumbnail Image
    Publication
    Developmental Controls are Re-Expressed during Induction of Neurogenesis in the Neocortex of Young Adult Mice
    (Frontiers Research Foundation, 2012) Sohur, Usharbudh; Arlotta, Paola; Macklis, Jeffrey
    Whether induction of low-level neurogenesis in normally non-neurogenic regions of the adult brain mimics aspects of developmental neurogenesis is currently unknown. Previously, we and others identified that biophysically induced, neuron subtype-specific apoptosis in mouse neocortex results in induction of neurogenesis of limited numbers of subtype-appropriate projection neurons with axonal projections to either thalamus or spinal cord, depending on the neuron subtype activated to undergo targeted apoptosis. Here, we test the hypothesis that developmental genes from embryonic corticogenesis are re-activated, and that some of these genes might underlie induction of low-level adult neocortical neurogenesis. We directly investigated this hypothesis via microarray analysis of microdissected regions of young adult mouse neocortex undergoing biophysically activated targeted apoptosis of neocortical callosal projection neurons. We compared the microarray results identifying differentially expressed genes with public databases of embryonic developmental genes. We find that, following activation of subtype-specific neuronal apoptosis, three distinct sets of normal developmental genes are selectively re-expressed in neocortical regions of induced neurogenesis in young adult mice: (1) genes expressed by subsets of progenitors and immature neurons in the developing ventricular and/or subventricular zones; (2) genes normally expressed by developmental radial glial progenitors; and (3) genes involved in synaptogenesis. Together with previous results, the data indicate that at least some developmental molecular controls over embryonic neurogenesis can be re-activated in the setting of induction of neurogenesis in the young adult neocortex, and suggest that some of these activate and initiate adult neuronal differentiation from endogenous progenitor populations. Understanding molecular mechanisms contributing to induced adult neurogenesis might enable directed CNS repair.
  • Thumbnail Image
    Publication
    Ctip2 Controls the Differentiation of Medium Spiny Neurons and the Establishment of the Cellular Architecture of the Striatum
    (Society for Neuroscience, 2008) Arlotta, Paola; Molyneaux, Bradley John; Jabaudon, Denis; Yoshida, Yutaka; Macklis, Jeffrey
    Striatal medium spiny neurons (MSN) are critically involved in motor control, and their degeneration is a principal component of Huntington's disease. We find that the transcription factor Ctip2 (also known as Bcl11b) is central to MSN differentiation and striatal development. Within the striatum, it is expressed by all MSN, although it is excluded from essentially all striatal interneurons. In the absence of Ctip2, MSN do not fully differentiate, as demonstrated by dramatically reduced expression of a large number of MSN markers, including DARPP-32, FOXP1, Chrm4, Reelin, MOR1 (mu-opioid receptor 1), glutamate receptor 1, and Plexin-D1. Furthermore, MSN fail to aggregate into patches, resulting in severely disrupted patch-matrix organization within the striatum. Finally, heterotopic cellular aggregates invade the Ctip2-/- striatum, suggesting a failure by MSN to repel these cells in the absence of Ctip2. This is associated with abnormal dopaminergic innervation of the mutant striatum and dramatic changes in gene expression, including dysregulation of molecules involved in cellular repulsion. Together, these data indicate that Ctip2 is a critical regulator of MSN differentiation, striatal patch development, and the establishment of the cellular architecture of the striatum.