Person:
Zhou, Jin-Rong

Loading...
Profile Picture

Email Address

AA Acceptance Date

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Zhou

First Name

Jin-Rong

Name

Zhou, Jin-Rong

Search Results

Now showing 1 - 3 of 3
  • Thumbnail Image
    Publication
    Human selenium binding protein-1 (hSP56) is a negative regulator of HIF-1α and suppresses the malignant characteristics of prostate cancer cells
    (Korean Society for Biochemistry and Molecular Biology, 2014) Jeong, Jee-Yeong; Zhou, Jin-Rong; Gao, Chong; Feldman, Laurie; Sytkowski, Arthur J.
    In the present study, we demonstrate that ectopic expression of 56-kDa human selenium binding protein-1 (hSP56) in PC-3 cells that do not normally express hSP56 results in a marked inhibition of cell growth in vitro and in vivo. Down-regulation of hSP56 in LNCaP cells that normally express hSP56 results in enhanced anchorage-independent growth. PC-3 cells expressing hSP56 exhibit a significant reduction of hypoxia inducible protein (HIF)-1α protein levels under hypoxic conditions without altering HIF-1α mRNA (HIF1A) levels. Taken together, our findings strongly suggest that hSP56 plays a critical role in prostate cells by mechanisms including negative regulation of HIF-1α, thus identifying hSP56 as a candidate anti-oncogene product. [BMB Reports 2014; 47(7): 411-416]
  • Thumbnail Image
    Publication
    Tanshinones Inhibit the Growth of Breast Cancer Cells through Epigenetic Modification of Aurora A Expression and Function
    (Public Library of Science, 2012) Li, Yanli; Gong, Yi; Abdolmaleky, Hamid M.; Li, Lingling; Zhou, Jin-Rong
    The objectives of this study were to evaluate the effects of tanshinones from a Chinese herb Salvia Miltiorrhiza on the growth of breast cancer cells, and to elucidate cellular and molecular mechanisms of action. Tanshinones showed the dose-dependent effect on the growth inhibition of breast cancer cells in vitro, with tanshinone I (T1) the most potent agent. T1 was also the only tanshinone to have potent activity in inhibiting the growth of the triple-negative breast cancer cell line MDA-MB231. T1 caused cell cycle arrests of both estrogen-dependent and estrogen-independent cell lines associated with alterations of cyclinD, CDK4 and cyclinB, and induced breast cancer cell apoptosis associated with upregulation of c-PARP and downregulation of survivin and Aurora A. Among these associated biomarkers, Aurora A showed the most consistent pattern with the anti-growth activity of tanshinones. Overexpression of Aurora A was also verified in breast tumors. The gene function assay showed that knockdown of Aurora A by siRNA dramatically reduced the growth-inhibition and apoptosis-induction activities of T1, suggesting Aurora A as an important functional target of T1 action. On the other hand, tanshinones had much less adverse effects on normal mammary epithelial cells. Epigenetic mechanism studies showed that overexpression of Aurora A gene in breast cancer cells was not regulated by gene promoter DNA methylation, but by histone acetylation. T1 treatment significantly reduced acetylation levels of histone H3 associated with Aurora A gene. Our results supported the potent activity of T1 in inhibiting the growth of breast cancer cells in vitro in part by downregulation of Aurora A gene function. Our previous studies also demonstrated that T1 had potent anti-angiogenesis activity and minimal side effects in vivo. Altogether, this study warrants further investigation to develop T1 as an effective and safe agent for the therapy and prevention of breast cancer.
  • Thumbnail Image
    Publication
    Flavonoid Ampelopsin Inhibits the Growth and Metastasis of Prostate Cancer In Vitro and in Mice
    (Public Library of Science, 2012) Ni, Feng; Gong, Yi; Li, Lingling; Abdolmaleky, Hamid M.; Zhou, Jin-Rong
    The objective of this study was to evaluate the chemopreventive effect of a novel flavonoid, ampelopsin (AMP) on the growth and metastasis of prostate cancer cells. AMP showed the more potent activity in inhibiting the proliferation of androgen-sensitive LNCaP and, to less extent, androgen-independent PC-3 human prostate cancer cell lines in vitro, primarily by induction of apoptosis associated with down-regulation of bcl-2. On the other hand, AMP showed much less activity in inhibiting the proliferation of normal prostate epithelial cells than that of prostate cancer cell lines. AMP also inhibited the migration and invasion of PC-3 cells in vitro associated with down-regulation of CXCR4 expression. In the animal study using an orthotopic prostate tumor model, AMP (150 and 300 mg/kg body weight) inhibited the growth of PC-3 tumors and lymph node and lung metastases in a dose-dependent manner. Compared to the control mice, mice treated with AMP at 300 mg/kg BW had reduced final tumor weight by 49.2% (P<0.05), lymph node metastases by 54.5% (P = 0.3) and lung metastases by 93% (P<0.05), but had no apparent alteration on food intake or body weight. The in vivo anti-growth and anti-metastasis activities of AMP were associated with induction of apoptosis and inhibition of proliferation of prostate cancer cells, reduction of prostate tumor angiogenesis, and reduction of CXCR4 expression. Our results provide supporting evidence to warrant further investigation to develop AMP as a novel efficacious and safe candidate agent against progression and metastasis of prostate cancer.