Person: Spatz, Jordan Matthew
Loading...
Email Address
AA Acceptance Date
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Spatz
First Name
Jordan Matthew
Name
Spatz, Jordan Matthew
Search Results
Now showing 1 - 1 of 1
Publication Amphiregulin-EGFR Signaling Mediates the Migration of Bone Marrow Mesenchymal Progenitors toward PTH-Stimulated Osteoblasts and Osteocytes(Public Library of Science, 2012) Zhu, Ji; Siclari, Valerie A.; Liu, Fei; Spatz, Jordan Matthew; Chandra, Abhishek; Divieti Pajevic, Paola; Qin, LingIntermittent administration of parathyroid hormone (PTH) dramatically increases bone mass and currently is one of the most effective treatments for osteoporosis. However, the detailed mechanisms are still largely unknown. Here we demonstrate that conditioned media from PTH-treated osteoblastic and osteocytic cells contain soluble chemotactic factors for bone marrow mesenchymal progenitors, which express a low amount of PTH receptor (PTH1R) and do not respond to PTH stimulation by increasing cAMP production or migrating toward PTH alone. Conditioned media from PTH-treated osteoblasts elevated phosphorylated Akt and p38MAPK amounts in mesenchymal progenitors and inhibition of these pathways blocked the migration of these progenitors toward conditioned media. Our previous and current studies revealed that PTH stimulates the expression of amphiregulin, an epidermal growth factor (EGF)-like ligand that signals through the EGF receptor (EGFR), in both osteoblasts and osteocytes. Interestingly, conditioned media from PTH-treated osteoblasts increased EGFR phosphorylation in mesenchymal progenitors. Using several different approaches, including inhibitor, neutralizing antibody, and siRNA, we demonstrate that PTH increases the release of amphiregulin from osteoblastic cells, which acts on the EGFRs expressed on mesenchymal progenitors to stimulate the Akt and p38MAPK pathways and subsequently promote their migration in vitro. Furthermore, inactivation of EGFR signaling specifically in osteoprogenitors/osteoblasts attenuated the anabolic actions of PTH on bone formation. Taken together, these results suggest a novel mechanism for the therapeutic effect of PTH on osteoporosis and an important role of EGFR signaling in mediating PTH's anabolic actions on bone.