Person: Li, Wenlu
Loading...
Email Address
AA Acceptance Date
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Li
First Name
Wenlu
Name
Li, Wenlu
2 results
Search Results
Now showing 1 - 2 of 2
Publication Potential Circadian Effects on Translational Failure for Neuroprotection(Springer Science and Business Media LLC, 2020-06-03) Esposito, Elga; Li, Wenlu; Mandeville, Emiri; Park, Ji-Hyun; Sencan, Ikbal; Guo, Shuzhen; Shi, Jingfei; Lan, Jing; Lee, Janice; Hayakawa, Kazuhide; Sakadzic, Sava; Ji, Xunming; Lo, EngNeuroprotectant strategies that have worked in rodent models of stroke have failed to provide protection in clinical trials. Here we show that the opposite circadian cycles in nocturnal rodents versus diurnal humans may contribute to this failure in translation. We tested three independent neuroprotective approaches-normobaric hyperoxia, the free radical scavenger α-phenyl-butyl-tert-nitrone (αPBN), and the N-methyl-D-aspartic acid (NMDA) antagonist MK801-in mouse and rat models of focal cerebral ischaemia. All three treatments reduced infarction in day-time (inactive phase) rodent models of stroke, but not in night-time (active phase) rodent models of stroke, which match the phase (active, day-time) during which most strokes occur in clinical trials. Laser-speckle imaging showed that the penumbra of cerebral ischaemia was narrower in the active-phase mouse model than in the inactive-phase model. The smaller penumbra was associated with a lower density of terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL)-positive dying cells and reduced infarct growth from 12 to 72 h. When we induced circadian-like cycles in primary mouse neurons, deprivation of oxygen and glucose triggered a smaller release of glutamate and reactive oxygen species, as well as lower activation of apoptotic and necroptotic mediators, in 'active-phase' than in 'inactive-phase' rodent neurons. αPBN and MK801 reduced neuronal death only in 'inactive-phase' neurons. These findings suggest that the influence of circadian rhythm on neuroprotection must be considered for translational studies in stroke and central nervous system diseases.Publication A potential gliovascular mechanism for microglial activation: differential phenotypic switching of microglia by endothelium versus astrocytes(BioMed Central, 2018) Xing, Changhong; Li, Wenlu; Deng, Wenjun; Ning, MingMing; Lo, EngBackground: Activation of microglia can result in phenotypic and functional diversity. However, the pathways that trigger different states of microglial activation remain to be fully understood. Here, we hypothesized that after injury, astrocytes and endothelium may contribute to a gliovascular switch for microglial activation. Methods: Astrocytes or cerebral endothelial cells were subjected to oxygen glucose deprivation, then conditioned media were transferred to microglia. The release of TNFα, IL-1β, IL-10, and IGF-1 was measured using ELISA. Surface markers of CD11b, CD45, CD86, and MHC class II were detected by flow cytometry. mRNA expression of iNOS, CD86, CD206, Arginase1, and transcription factors was measured using real-time PCR. Microglial function including migration and phagocytosis was assessed. Dendritogenesis was determined by counting the number of primary dendrites, secondary dendrites, and dendritic ends in the neurons exposed to either endothelial- or astrocyte-activated microglia. Results: Exposure to conditioned media from oxygen-glucose-deprived cerebral endothelial cells or oxygen-glucose-deprived astrocytes activated microglia into different forms. The endothelium converted ramified microglia into amoeboid shapes; increased the release of TNFα, IL-1β, and IL-10; decreased IGF-1; upregulated iNOS expression; and inhibited microglial migration and phagocytosis. In contrast, astrocytes increased microglial production of IGF-1, upregulated CD206 expression, and enhanced microglial phagocytosis. These opposing effects of the endothelium versus astrocyte crosstalk partly mirror potentially deleterious versus potentially beneficial microglial phenotypes. Consistent with this idea, endothelial-activated microglia were neurotoxic, whereas astrocyte-activated microglia did not affect neuronal viability but instead promoted neuronal dendritogenesis. Conclusion: These findings provide proof of concept that endothelial cells and astrocytes provide differing signals to microglia that influence their activation states and suggest that a gliovascular switch may be involved in the balance between beneficial versus deleterious microglial properties. Electronic supplementary material The online version of this article (10.1186/s12974-018-1189-2) contains supplementary material, which is available to authorized users.