Person: Lee, Wonsik
Loading...
Email Address
AA Acceptance Date
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Lee
First Name
Wonsik
Name
Lee, Wonsik
3 results
Search Results
Now showing 1 - 3 of 3
Publication Multidrug Intrinsic Resistance Factors inStaphylococcus aureusIdentified by Profiling Fitness within High-Diversity Transposon Libraries(American Society for Microbiology, 2016) Rajagopal, Mithila; Martin, Melissa Janet; Santiago, Marina; Lee, Wonsik; Kos, Veronica N.; Meredith, Timothy; Gilmore, Michael; Kahne, SuzanneStaphylococcus aureus is a leading cause of life-threatening infections worldwide. The MIC of an antibiotic against S. aureus, as well as other microbes, is determined by the affinity of the antibiotic for its target in addition to a complex interplay of many other cellular factors. Identifying nontarget factors impacting resistance to multiple antibiotics could inform the design of new compounds and lead to more-effective antimicrobial strategies. We examined large collections of transposon insertion mutants in S. aureus using transposon sequencing (Tn-Seq) to detect transposon mutants with reduced fitness in the presence of six clinically important antibiotics-ciprofloxacin, daptomycin, gentamicin, linezolid, oxacillin, and vancomycin. This approach allowed us to assess the relative fitness of many mutants simultaneously within these libraries. We identified pathways/genes previously known to be involved in resistance to individual antibiotics, including graRS and vraFG (graRS/vraFG), mprF, and fmtA, validating the approach, and found several to be important across multiple classes of antibiotics. We also identified two new, previously uncharacterized genes, SAOUHSC_01025 and SAOUHSC_01050, encoding polytopic membrane proteins, as important in limiting the effectiveness of multiple antibiotics. Machine learning identified similarities in the fitness profiles of graXRS/vraFG, SAOUHSC_01025, and SAOUHSC_01050 mutants upon antibiotic treatment, connecting these genes of unknown function to modulation of crucial cell envelope properties. Therapeutic strategies that combine a known antibiotic with a compound that targets these or other intrinsic resistance factors may be of value for enhancing the activity of existing antibiotics for treating otherwise-resistant S. aureus strains.Publication A synthetic lethal approach for compound and target identification in Staphylococcus aureus(2015) Pasquina, Lincoln; Maria, John P. Santa; Wood, B. McKay; Moussa, Samir H.; Matano, Leigh; Santiago, Marina; Martin, Sara; Lee, Wonsik; Meredith, Timothy; Walker, SuzanneThe majority of bacterial proteins are dispensable for growth in the laboratory, but nevertheless play important physiological roles. There are no systematic approaches to identify cell-permeable small molecule inhibitors of these proteins. We demonstrate a strategy to identify such inhibitors that exploits synthetic lethal relationships both for small molecule discovery and for target identification. Applying this strategy in Staphylococcus aureus, we have identified a compound that inhibits DltB, a component of the teichoic acid D-alanylation machinery, which has been implicated in virulence. This D-alanylation inhibitor sensitizes S. aureus to aminoglycosides and cationic peptides and is lethal in combination with a wall teichoic acid inhibitor. We conclude that DltB is a druggable target in the D-alanylation pathway. More broadly, the work described demonstrates a systematic method to identify biologically active inhibitors of important bacterial processes that can be adapted to numerous organisms.Publication Novel protein acetyltransferase, Rv2170, modulates carbon and energy metabolism in Mycobacterium tuberculosis(Nature Publishing Group UK, 2017) Lee, Wonsik; VanderVen, Brian C.; Walker, Suzanne; Russell, David G.Recent data indicate that the metabolism of Mycobacterium tuberculosis (Mtb) inside its host cell is heavily dependent on cholesterol and fatty acids. Mtb exhibits a unique capacity to co-metabolize different carbon sources and the products from these substrates are compartmentalized metabolically. Isocitrate lies at one of the key nodes of carbon metabolism and can feed into either the glyoxylate shunt (via isocitrate lyase) or the TCA cycle (via isocitrate dehydrogenase (ICDH) activity) and we sought to better understand the regulation at this junction. An isocitrate lyase-deficient mutant of Mtb (Δicl1) exhibited a delayed growth phenotype in stearic acid (C18 fatty acid) media and we isolated rescue mutants that had lost this growth delay. We found that mutations in the gene rv2170 promoted Mtb replication under these conditions and rescued the growth delay in a Δicl1 background. The Mtb Rv2170 protein shows lysine acetyltransferase activity, which is capable of post-translationally modifying lysine residues of the ICDH protein leading to a reduction in its enzymatic activity. Our data show that contrary to most bacteria that regulate ICDH activity through phosphorylation, Mtb is capable of regulating ICDH activity by acetylation. This mechanism of regulation is similar to that utilized for mammalian mitochondrial ICDH.