Person:
Butovsky, Oleg

Loading...
Profile Picture

Email Address

AA Acceptance Date

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Butovsky

First Name

Oleg

Name

Butovsky, Oleg

Search Results

Now showing 1 - 5 of 5
  • Thumbnail Image
    Publication
    Identification of a Unique TGF-β Dependent Molecular and Functional Signature in Microglia
    (2014) Butovsky, Oleg; Jedrychowski, Mark; Moore, Craig S.; Cialic, Ron; Lanser, Amanda J.; Gabriely, Galina; Koeglsperger, Thomas; Dake, Ben; Wu, Pauline M.; Doykan, Camille E.; Fanek, Zain; Liu, LiPing; Chen, Zhuoxun; Rothstein, Jeffrey D.; Ransohoff, Richard M.; Gygi, Steven; Antel, Jack P.; Weiner, Howard
    Microglia are myeloid cells of the central nervous system (CNS) that participate both in normal CNS function and disease. We investigated the molecular signature of microglia and identified 239 genes and 8 microRNAs that were uniquely or highly expressed in microglia vs. myeloid and other immune cells. Out of 239 genes, 106 were enriched in microglia as compared to astrocytes, oligodendrocytes and neurons. This microglia signature was not observed in microglial lines or in monocytes recruited to the CNS and was also observed in human microglia. Based on this signature, we found a crucial role for TGF-β in microglial biology that included: 1) the requirement of TGF-β for the in vitro development of microglia that express the microglial molecular signature characteristic of adult microglia; and 2) the absence of microglia in CNS TGF-β1 deficient mice. Our results identify a unique microglial signature that is dependent on TGF-β signaling which provides insights into microglial biology and the possibility of targeting microglia for the treatment of CNS disease.
  • Thumbnail Image
    Publication
    Differential roles of microglia and monocytes in the inflamed central nervous system
    (The Rockefeller University Press, 2014) Yamasaki, Ryo; Lu, Haiyan; Butovsky, Oleg; Ohno, Nobuhiko; Rietsch, Anna M.; Cialic, Ron; Wu, Pauline M.; Doykan, Camille E.; Lin, Jessica; Cotleur, Anne C.; Kidd, Grahame; Zorlu, Musab M.; Sun, Nathan; Hu, Weiwei; Liu, LiPing; Lee, Jar-Chi; Taylor, Sarah E.; Uehlein, Lindsey; Dixon, Debra; Gu, Jinyu; Floruta, Crina M.; Zhu, Min; Charo, Israel F.; Weiner, Howard; Ransohoff, Richard M.
    In the human disorder multiple sclerosis (MS) and in the model experimental autoimmune encephalomyelitis (EAE), macrophages predominate in demyelinated areas and their numbers correlate to tissue damage. Macrophages may be derived from infiltrating monocytes or resident microglia, yet are indistinguishable by light microscopy and surface phenotype. It is axiomatic that T cell–mediated macrophage activation is critical for inflammatory demyelination in EAE, yet the precise details by which tissue injury takes place remain poorly understood. In the present study, we addressed the cellular basis of autoimmune demyelination by discriminating microglial versus monocyte origins of effector macrophages. Using serial block-face scanning electron microscopy (SBF-SEM), we show that monocyte-derived macrophages associate with nodes of Ranvier and initiate demyelination, whereas microglia appear to clear debris. Gene expression profiles confirm that monocyte-derived macrophages are highly phagocytic and inflammatory, whereas those arising from microglia demonstrate an unexpected signature of globally suppressed cellular metabolism at disease onset. Distinguishing tissue-resident macrophages from infiltrating monocytes will point toward new strategies to treat disease and promote repair in diverse inflammatory pathologies in varied organs.
  • Thumbnail Image
    Publication
    Dark microglia: A new phenotype predominantly associated with pathological states
    (John Wiley and Sons Inc., 2016) Bisht, Kanchan; Sharma, Kaushik P.; Lecours, Cynthia; Gabriela Sánchez, Maria; El Hajj, Hassan; Milior, Giampaolo; Olmos‐Alonso, Adrián; Gómez‐Nicola, Diego; Luheshi, Giamal; Vallières, Luc; Branchi, Igor; Maggi, Laura; Limatola, Cristina; Butovsky, Oleg; Tremblay, Marie‐Ève
    The past decade has witnessed a revolution in our understanding of microglia. These immune cells were shown to actively remodel neuronal circuits, leading to propose new pathogenic mechanisms. To study microglial implication in the loss of synapses, the best pathological correlate of cognitive decline across chronic stress, aging, and diseases, we recently conducted ultrastructural analyses. Our work uncovered the existence of a new microglial phenotype that is rarely present under steady state conditions, in hippocampus, cerebral cortex, amygdala, and hypothalamus, but becomes abundant during chronic stress, aging, fractalkine signaling deficiency (CX3CR1 knockout mice), and Alzheimer's disease pathology (APP‐PS1 mice). Even though these cells display ultrastructural features of microglia, they are strikingly distinct from the other phenotypes described so far at the ultrastructural level. They exhibit several signs of oxidative stress, including a condensed, electron‐dense cytoplasm and nucleoplasm making them as “dark” as mitochondria, accompanied by a pronounced remodeling of their nuclear chromatin. Dark microglia appear to be much more active than the normal microglia, reaching for synaptic clefts, while extensively encircling axon terminals and dendritic spines with their highly ramified and thin processes. They stain for the myeloid cell markers IBA1 and GFP (in CX3CR1‐GFP mice), and strongly express CD11b and microglia‐specific 4D4 in their processes encircling synaptic elements, and TREM2 when they associate with amyloid plaques. Overall, these findings suggest that dark microglia, a new phenotype that we identified based on their unique properties, could play a significant role in the pathological remodeling of neuronal circuits, especially at synapses. GLIA 2016;64:826–839
  • Thumbnail Image
    Publication
    P2Y12 expression and function in alternatively activated human microglia
    (Lippincott Williams & Wilkins, 2015) Moore, Craig S.; Ase, Ariel R.; Kinsara, Angham; Rao, Vijayaraghava T.S.; Michell-Robinson, Mackenzie; Leong, Soo Yuen; Butovsky, Oleg; Ludwin, Samuel K.; Séguéla, Philippe; Bar-Or, Amit; Antel, Jack P.
    Objective: To investigate and measure the functional significance of altered P2Y12 expression in the context of human microglia activation. Methods: We performed in vitro and in situ experiments to measure how P2Y12 expression can influence disease-relevant functional properties of classically activated (M1) and alternatively activated (M2) human microglia in the inflamed brain. Results: We demonstrated that compared to resting and classically activated (M1) human microglia, P2Y12 expression is increased under alternatively activated (M2) conditions. In response to ADP, the endogenous ligand of P2Y12, M2 microglia have increased ligand-mediated calcium responses, which are blocked by selective P2Y12 antagonism. P2Y12 antagonism was also shown to decrease migratory and inflammatory responses in human microglia upon exposure to nucleotides that are released during CNS injury; no effects were observed in human monocytes or macrophages. In situ experiments confirm that P2Y12 is selectively expressed on human microglia and elevated under neuropathologic conditions that promote Th2 responses, such as parasitic CNS infection. Conclusion: These findings provide insight into the roles of M2 microglia in the context of neuroinflammation and suggest a mechanism to selectively target a functionally unique population of myeloid cells in the CNS.
  • Thumbnail Image
    Publication
    Characterisation of Immune and Neuroinflammatory Changes Associated with Chemotherapy-Induced Peripheral Neuropathy
    (Public Library of Science, 2017) Makker, Preet G. S.; Duffy, Samuel S.; Lees, Justin G.; Perera, Chamini J.; Tonkin, Ryan S.; Butovsky, Oleg; Park, Susanna B.; Goldstein, David; Moalem-Taylor, Gila
    Chemotherapy-induced peripheral neuropathy (CIPN) and associated neuropathic pain is a debilitating adverse effect of cancer treatment. Current understanding of the mechanisms underpinning CIPN is limited and there are no effective treatment strategies. In this study, we treated male C57BL/6J mice with 4 cycles of either Paclitaxel (PTX) or Oxaliplatin (OXA) over a week and tested pain hypersensitivity and changes in peripheral immune responses and neuroinflammation on days 7 and 13 post 1st injection. We found that both PTX and OXA caused significant mechanical allodynia. In the periphery, PTX and OXA significantly increased circulating CD4+ and CD8+ T-cell populations. OXA caused a significant increase in the percentage of interleukin-4+ lymphocytes in the spleen and significant down-regulation of regulatory T (T-reg) cells in the inguinal lymph nodes. However, conditional depletion of T-reg cells in OXA-treated transgenic DEREG mice had no additional effect on pain sensitivity. Furthermore, there was no leukocyte infiltration into the nervous system of OXA- or PTX-treated mice. In the peripheral nervous system, PTX induced expression of the neuronal injury marker activating transcription factor-3 in IB4+ and NF200+ sensory neurons as well as an increase in the chemokines CCL2 and CCL3 in the lumbar dorsal root ganglion. In the central nervous system, PTX induced significant astrocyte activation in the spinal cord dorsal horn, and both PTX and OXA caused reduction of P2ry12+ homeostatic microglia, with no measurable changes in IBA-1+ microglia/macrophages in the dorsal and ventral horns. We also found that PTX induced up-regulation of several inflammatory cytokines and chemokines (TNF-α, IFN-γ, CCL11, CCL4, CCL3, IL-12p70 and GM-CSF) in the spinal cord. Overall, these findings suggest that PTX and OXA cause distinct pathological changes in the periphery and nervous system, which may contribute to chemotherapy-induced neuropathic pain.