Person: Mariotti, Marco
Loading...
Email Address
AA Acceptance Date
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Mariotti
First Name
Marco
Name
Mariotti, Marco
5 results
Search Results
Now showing 1 - 5 of 5
Publication Molecular Footprints of Aquatic Adaptation Including Bone Mass Changes in Cetaceans(Oxford University Press, 2018) Zhou, Xuming; Sun, Di; Guang, Xuanmin; Ma, Siming; Fang, Xiaodong; Mariotti, Marco; Nielsen, Rasmus; Gladyshev, Vadim; Yang, GuangAbstract Cetaceans (whales, dolphins, and porpoises) are a group of specialized mammals that evolved from terrestrial ancestors and are fully adapted to aquatic habitats. Taking advantage of the recently sequenced finless porpoise genome, we conducted comparative analyses of the genomes of seven cetaceans and related terrestrial species to provide insight into the molecular bases of adaptation of these aquatic mammals. Changes in gene sequences were identified in main lineages of cetaceans, offering an evolutionary picture of cetacean genomes that reveal new pathways that could be associated with adaptation to aquatic lifestyle. We profiled bone microanatomical structures across 28 mammals, including representatives of cetaceans, pinnipeds, and sirenians. Subsequent phylogenetic comparative analyses revealed genes (including leptin, insulin-like growth factor 1, and collagen type I alpha 2 chain) with the root-to-tip substitution rate significantly correlated with bone compactness, implicating these genes could be involved in bone mass control. Overall, this study described adjustments of the genomes of cetaceans according to lifestyle, phylogeny, and bone mass.Publication Lokiarchaeota Marks the Transition between the Archaeal and Eukaryotic Selenocysteine Encoding Systems(Oxford University Press, 2016) Mariotti, Marco; Lobanov, Alexei V.; Manta, Bruno; Santesmasses, Didac; Bofill, Andreu; Guigó, Roderic; Gabaldón, Toni; Gladyshev, VadimSelenocysteine (Sec) is the 21st amino acid in the genetic code, inserted in response to UGA codons with the help of RNA structures, the SEC Insertion Sequence (SECIS) elements. The three domains of life feature distinct strategies for Sec insertion in proteins and its utilization. While bacteria and archaea possess similar sets of selenoproteins, Sec biosynthesis is more similar among archaea and eukaryotes. However, SECIS elements are completely different in the three domains of life. Here, we analyze the archaeon Lokiarchaeota that resolves the relationships among Sec insertion systems. This organism has selenoproteins representing five protein families, three of which have multiple Sec residues. Remarkably, these archaeal selenoprotein genes possess conserved RNA structures that strongly resemble the eukaryotic SECIS element, including key eukaryotic protein-binding sites. These structures also share similarity with the SECIS element in archaeal selenoprotein VhuD, suggesting a relation of direct descent. These results identify Lokiarchaeota as an intermediate form between the archaeal and eukaryotic Sec-encoding systems and clarify the evolution of the Sec insertion system.Publication Computational identification of the selenocysteine tRNA (tRNASec) in genomes(Public Library of Science, 2017) Santesmasses, Didac; Mariotti, Marco; Guigó, RodericSelenocysteine (Sec) is known as the 21st amino acid, a cysteine analogue with selenium replacing sulphur. Sec is inserted co-translationally in a small fraction of proteins called selenoproteins. In selenoprotein genes, the Sec specific tRNA (tRNASec) drives the recoding of highly specific UGA codons from stop signals to Sec. Although found in organisms from the three domains of life, Sec is not universal. Many species are completely devoid of selenoprotein genes and lack the ability to synthesize Sec. Since tRNASec is a key component in selenoprotein biosynthesis, its efficient identification in genomes is instrumental to characterize the utilization of Sec across lineages. Available tRNA prediction methods fail to accurately predict tRNASec, due to its unusual structural fold. Here, we present Secmarker, a method based on manually curated covariance models capturing the specific tRNASec structure in archaea, bacteria and eukaryotes. We exploited the non-universality of Sec to build a proper benchmark set for tRNASec predictions, which is not possible for the predictions of other tRNAs. We show that Secmarker greatly improves the accuracy of previously existing methods constituting a valuable tool to identify tRNASec genes, and to efficiently determine whether a genome contains selenoproteins. We used Secmarker to analyze a large set of fully sequenced genomes, and the results revealed new insights in the biology of tRNASec, led to the discovery of a novel bacterial selenoprotein family, and shed additional light on the phylogenetic distribution of selenoprotein containing genomes. Secmarker is freely accessible for download, or online analysis through a web server at http://secmarker.crg.cat.Publication Novel Ciliate Genetic Code Variants Including the Reassignment of All Three Stop Codons to Sense Codons in Condylostoma magnum(Oxford University Press, 2016) Heaphy, Stephen M.; Mariotti, Marco; Gladyshev, Vadim; Atkins, John F.; Baranov, Pavel V.mRNA translation in many ciliates utilizes variant genetic codes where stop codons are reassigned to specify amino acids. To characterize the repertoire of ciliate genetic codes, we analyzed ciliate transcriptomes from marine environments. Using codon substitution frequencies in ciliate protein-coding genes and their orthologs, we inferred the genetic codes of 24 ciliate species. Nine did not match genetic code tables currently assigned by NCBI. Surprisingly, we identified a novel genetic code where all three standard stop codons (TAA, TAG, and TGA) specify amino acids in Condylostoma magnum. We provide evidence suggesting that the functions of these codons in C. magnum depend on their location within mRNA. They are decoded as amino acids at internal positions, but specify translation termination when in close proximity to an mRNA 3′ end. The frequency of stop codons in protein coding sequences of closely related Climacostomum virens suggests that it may represent a transitory state.Publication Multiple RNA structures affect translation initiation and UGA redefinition efficiency during synthesis of selenoprotein P(Oxford University Press, 2017) Mariotti, Marco; Shetty, Sumangala; Baird, Lisa; Wu, Sen; Loughran, Gary; Copeland, Paul R.; Atkins, John F.; Howard, Michael T.Abstract Gene-specific expansion of the genetic code allows for UGA codons to specify the amino acid selenocysteine (Sec). A striking example of UGA redefinition occurs during translation of the mRNA coding for the selenium transport protein, selenoprotein P (SELENOP), which in vertebrates may contain up to 22 in-frame UGA codons. Sec incorporation at the first and downstream UGA codons occurs with variable efficiencies to control synthesis of full-length and truncated SELENOP isoforms. To address how the Selenop mRNA can direct dynamic codon redefinition in different regions of the same mRNA, we undertook a comprehensive search for phylogenetically conserved RNA structures and examined the function of these structures using cell-based assays, in vitro translation systems, and in vivo ribosome profiling of liver tissue from mice carrying genomic deletions of 3′ UTR selenocysteine-insertion-sequences (SECIS1 and SECIS2). The data support a novel RNA structure near the start codon that impacts translation initiation, structures located adjacent to UGA codons, additional coding sequence regions necessary for efficient production of full-length SELENOP, and distinct roles for SECIS1 and SECIS2 at UGA codons. Our results uncover a remarkable diversity of RNA elements conducting multiple occurrences of UGA redefinition to control the synthesis of full-length and truncated SELENOP isoforms.