Person:
Zou, Peng

Loading...
Profile Picture

Email Address

AA Acceptance Date

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Zou

First Name

Peng

Name

Zou, Peng

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Publication
    Bright and Fast Multicoloured Voltage Reporters via Electrochromic FRET
    (Nature Publishing Group, 2014) Zou, Peng; Zhao, Yongxin; Douglass, Adam D.; Hochbaum, Daniel; Brinks, Daan; Werley, Christopher A.; Harrison, D. Jed; Campbell, Robert E.; Cohen, Adam
    Genetically encoded fluorescent reporters of membrane potential promise to reveal aspects of neural function not detectable by other means. We present a palette of multicoloured brightly fluorescent genetically encoded voltage indicators with sensitivities from 8–13% ΔF/F per 100 mV, and half-maximal response times from 4–7 ms. A fluorescent protein is fused to an archaerhodopsin-derived voltage sensor. Voltage-induced shifts in the absorption spectrum of the rhodopsin lead to voltage-dependent nonradiative quenching of the appended fluorescent protein. Through a library screen, we identify linkers and fluorescent protein combinations that report neuronal action potentials in cultured rat hippocampal neurons with a single-trial signal-to-noise ratio from 7 to 9 in a 1 kHz imaging bandwidth at modest illumination intensity. The freedom to choose a voltage indicator from an array of colours facilitates multicolour voltage imaging, as well as combination with other optical reporters and optogenetic actuators.
  • Thumbnail Image
    Publication
    All-optical electrophysiology in mammalian neurons using engineered microbial rhodopsins
    (2014) Hochbaum, Daniel; Zhao, Yongxin; Farhi, Samouil; Klapoetke, Nathan; Werley, Christopher A.; Kapoor, Vikrant; Zou, Peng; Kralj, Joel M.; Maclaurin, Dougal; Smedemark-Margulies, Niklas; Saulnier, Jessica; Boulting, Gabriella; Straub, Christoph; Cho, Yong Ku; Melkonian, Michael; Wong, Gane Ka-Shu; Harrison, D. Jed; Murthy, Venkatesh; Sabatini, Bernardo; Boyden, Edward S.; Campbell, Robert E.; Cohen, Adam
    All-optical electrophysiology—spatially resolved simultaneous optical perturbation and measurement of membrane voltage—would open new vistas in neuroscience research. We evolved two archaerhodopsin-based voltage indicators, QuasAr1 and 2, which show improved brightness and voltage sensitivity, microsecond response times, and produce no photocurrent. We engineered a novel channelrhodopsin actuator, CheRiff, which shows improved light sensitivity and kinetics, and spectral orthogonality to the QuasArs. A co-expression vector, Optopatch, enabled crosstalk-free genetically targeted all-optical electrophysiology. In cultured neurons, we combined Optopatch with patterned optical excitation to probe back-propagating action potentials in dendritic spines, synaptic transmission, sub-cellular microsecond-timescale details of action potential propagation, and simultaneous firing of many neurons in a network. Optopatch measurements revealed homeostatic tuning of intrinsic excitability in human stem cell-derived neurons. In brain slice, Optopatch induced and reported action potentials and subthreshold events, with high signal-to-noise ratios. The Optopatch platform enables high-throughput, spatially resolved electrophysiology without use of conventional electrodes.